Nuprl Lemma : copathAgree_refl

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀x:copath(a.B[a];w). copathAgree(a.B[a];w;x;x)


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] copath: copath(a.B[a];w) copathAgree: copathAgree(a.B[a];w;x;y) nat: member: t ∈ T less_than: a < b and: P ∧ Q less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  top_wf less_than_anti-reflexive less_than_wf coPathAgree_refl copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut setElimination rename hypothesisEquality hypothesis because_Cache lessCases introduction sqequalRule isectElimination sqequalAxiom extract_by_obid isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination imageElimination lambdaEquality applyEquality dependent_functionElimination instantiate cumulativity functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    \mforall{}x:copath(a.B[a];w).  copathAgree(a.B[a];w;x;x)



Date html generated: 2018_07_25-PM-01_40_47
Last ObjectModification: 2018_06_08-PM-06_53_28

Theory : co-recursion


Home Index