Nuprl Lemma : copathAgree_refl
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀x:copath(a.B[a];w). copathAgree(a.B[a];w;x;x)
Proof
Definitions occuring in Statement : 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
copath: copath(a.B[a];w)
, 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
nat: ℕ
, 
member: t ∈ T
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
top_wf, 
less_than_anti-reflexive, 
less_than_wf, 
coPathAgree_refl, 
copath_wf, 
coW_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lessCases, 
introduction, 
sqequalRule, 
isectElimination, 
sqequalAxiom, 
extract_by_obid, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
imageElimination, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    \mforall{}x:copath(a.B[a];w).  copathAgree(a.B[a];w;x;x)
Date html generated:
2018_07_25-PM-01_40_47
Last ObjectModification:
2018_06_08-PM-06_53_28
Theory : co-recursion
Home
Index