Nuprl Lemma : strat2play_subtype_le
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[j:ℕn + 1].  (strat2play(g;n;s) ⊆r strat2play(g;j;s))
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
simple-game: SimpleGame
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
strat2play: strat2play(g;n;s)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_subtype_base, 
equal-wf-base, 
not_wf, 
bnot_wf, 
assert_wf, 
le_weakening, 
eq_int_wf, 
lelt_wf, 
simple-game_wf, 
nat_wf, 
not-lt-2, 
zero-mul, 
add-mul-special, 
le_weakening2, 
subtype_rel_transitivity, 
decidable__lt, 
minus-minus, 
not-ge-2, 
subtract_wf, 
le_reflexive, 
le-add-cancel, 
add-zero, 
not-equal-2, 
decidable__int_equal, 
le-add-cancel2, 
add_functionality_wrt_le, 
minus-zero, 
add-commutes, 
zero-add, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
sq_stable__le, 
not-le-2, 
decidable__le, 
int_seg_subtype_nat, 
win2strat_subtype, 
le_wf, 
false_wf, 
strat2play_wf, 
subtype_rel-equal, 
win2strat_wf, 
int_seg_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties
Rules used in proof : 
impliesFunctionality, 
cumulativity, 
instantiate, 
dependentIntersectionElimination, 
equalitySymmetry, 
equalityTransitivity, 
multiplyEquality, 
intEquality, 
voidEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
minusEquality, 
because_Cache, 
unionElimination, 
applyEquality, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
axiomEquality, 
isect_memberEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[j:\mBbbN{}n  +  1].    (strat2play(g;n;s)  \msubseteq{}r  strat2play(g;j;s))
Date html generated:
2018_07_25-PM-01_32_29
Last ObjectModification:
2018_06_17-PM-09_31_39
Theory : co-recursion
Home
Index