Nuprl Lemma : strat2play_subtype_le

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[j:ℕ1].  (strat2play(g;n;s) ⊆strat2play(g;j;s))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) simple-game: SimpleGame int_seg: {i..j-} nat: subtype_rel: A ⊆B uall: [x:A]. B[x] add: m natural_number: $n
Definitions unfolded in proof :  bfalse: ff btrue: tt ifthenelse: if then else fi  sq_type: SQType(T) strat2play: strat2play(g;n;s) top: Top true: True squash: T subtract: m sq_stable: SqStable(P) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] lelt: i ≤ j < k int_seg: {i..j-} not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_subtype_base equal-wf-base not_wf bnot_wf assert_wf le_weakening eq_int_wf lelt_wf simple-game_wf nat_wf not-lt-2 zero-mul add-mul-special le_weakening2 subtype_rel_transitivity decidable__lt minus-minus not-ge-2 subtract_wf le_reflexive le-add-cancel add-zero not-equal-2 decidable__int_equal le-add-cancel2 add_functionality_wrt_le minus-zero add-commutes zero-add add-associates minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le less-iff-le sq_stable__le not-le-2 decidable__le int_seg_subtype_nat win2strat_subtype le_wf false_wf strat2play_wf subtype_rel-equal win2strat_wf int_seg_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  impliesFunctionality cumulativity instantiate dependentIntersectionElimination equalitySymmetry equalityTransitivity multiplyEquality intEquality voidEquality imageElimination baseClosed imageMemberEquality minusEquality because_Cache unionElimination applyEquality productElimination independent_pairFormation dependent_set_memberEquality addEquality axiomEquality isect_memberEquality dependent_functionElimination lambdaEquality sqequalRule voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[j:\mBbbN{}n  +  1].    (strat2play(g;n;s)  \msubseteq{}r  strat2play(g;j;s))



Date html generated: 2018_07_25-PM-01_32_29
Last ObjectModification: 2018_06_17-PM-09_31_39

Theory : co-recursion


Home Index