Nuprl Lemma : win2strat_subtype

[g:SimpleGame]. ∀[n,m:ℕ].  win2strat(g;n) ⊆win2strat(g;m) supposing m ≤ n


Proof




Definitions occuring in Statement :  win2strat: win2strat(g;n) simple-game: SimpleGame nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A squash: T all: x:A. B[x] true: True decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf subtype_rel-equal win2strat_wf false_wf le_antisymmetry le_reflexive decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt nat_wf simple-game_wf subtype_rel_transitivity le_weakening2 not-le-2 win2strat-properties subtype_base_sq set_subtype_base int_subtype_base decidable__int_equal not-equal-2 not-lt-2 subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache dependent_set_memberEquality independent_pairFormation applyEquality imageElimination productElimination imageMemberEquality baseClosed unionElimination addEquality voidEquality intEquality minusEquality instantiate cumulativity

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n,m:\mBbbN{}].    win2strat(g;n)  \msubseteq{}r  win2strat(g;m)  supposing  m  \mleq{}  n



Date html generated: 2018_07_25-PM-01_32_21
Last ObjectModification: 2018_06_13-AM-10_58_55

Theory : co-recursion


Home Index