Nuprl Lemma : strat2play_wf

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)].  (strat2play(g;n;s) ∈ Type)


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) simple-game: SimpleGame nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  win2strat-strat2play-wf nat_wf simple-game_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].    (strat2play(g;n;s)  \mmember{}  Type)



Date html generated: 2018_07_25-PM-01_32_07
Last ObjectModification: 2018_06_11-PM-05_47_31

Theory : co-recursion


Home Index