Nuprl Lemma : strat2play-add

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n 1)]. ∀[moves:strat2play(g;n;s)].
  ∀[x,y:Pos(g)].
    (seq-add(seq-add(moves;x);y) ∈ strat2play(g;n 1;s)) supposing ((x (s moves) ∈ Pos(g)) and Legal1(x;y)) 
  supposing ||moves|| ((2 n) 2) ∈ ℤ


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-len: ||moves|| sg-legal1: Legal1(x;y) sg-pos: Pos(g) simple-game: SimpleGame seq-add: seq-add(s;x) nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  cand: c∧ B play-truncate: play-truncate(f;m) assert: b bnot: ¬bb pi1: fst(t) seq-truncate: seq-truncate(s;n) seq-add: seq-add(s;x) seq-len: ||s|| sequence: sequence(T) so_apply: x[s] so_lambda: λ2x.t[x] play-item: moves[i] play-len: ||moves|| it: unit: Unit bool: 𝔹 strat2play: strat2play(g;n;s) bfalse: ff btrue: tt ifthenelse: if then else fi  less_than: a < b nat_plus: + ge: i ≥  exists: x:A. B[x] lelt: i ≤ j < k int_seg: {i..j-} sq_type: SQType(T) guard: {T} top: Top true: True less_than': less_than'(a;b) le: A ≤ B subtract: m squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) prop: false: False implies:  Q rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: subtype_rel: A ⊆B win2strat: win2strat(g;n) member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  seq-add-item multiply_nat_wf add_nat_wf mul_bounds_1a seq-item_wf int_seg_wf assert-bnot bool_cases_sqequal assert_of_lt_int lt_int_wf sequence_wf seq-add-len seq-len_wf seq-add_wf strat2play-longer multiply-is-int-iff set_subtype_base add-is-int-iff strat2play_subtype strat2play-add1 uiff_transitivity sg-legal1_wf nat_properties assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf bool_cases less-iff-le less_than_wf omega-shadow minus-zero two-mul one-mul le_reflexive subtype_rel_self not-equal-implies-less lelt_wf le-add-cancel2 mul-distributes-right mul-associates not-lt-2 decidable__lt le_weakening2 subtract_wf play-item_wf sg-legal2_wf sg-pos_wf mul-commutes mul-distributes int_subtype_base subtype_base_sq add-subtract-cancel equal-wf-T-base not_wf bnot_wf assert_wf le_antisymmetry_iff eq_int_wf simple-game_wf win2strat_wf nat_wf strat2play_wf zero-mul add-mul-special le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le win2strat_subtype play-len_wf equal_wf
Rules used in proof :  hyp_replacement productEquality functionEquality functionExtensionality dependent_pairEquality closedConclusion baseApply applyLambdaEquality equalityElimination dependentIntersection_memberEquality axiomEquality impliesFunctionality promote_hyp sqequalIntensionalEquality dependent_pairFormation setEquality cumulativity instantiate dependentIntersectionElimination equalitySymmetry equalityTransitivity voidEquality isect_memberEquality lambdaEquality multiplyEquality minusEquality because_Cache imageElimination baseClosed imageMemberEquality sqequalRule independent_isectElimination independent_functionElimination productElimination voidElimination lambdaFormation independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality rename setElimination addEquality dependent_set_memberEquality applyEquality hypothesisEquality intEquality thin isectElimination extract_by_obid introduction hypothesis sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n  +  1)].  \mforall{}[moves:strat2play(g;n;s)].
    \mforall{}[x,y:Pos(g)].
        (seq-add(seq-add(moves;x);y)  \mmember{}  strat2play(g;n  +  1;s))  supposing 
              ((x  =  (s  moves))  and 
              Legal1(x;y)) 
    supposing  ||moves||  =  ((2  *  n)  +  2)



Date html generated: 2018_07_25-PM-01_33_33
Last ObjectModification: 2018_06_25-AM-11_35_04

Theory : co-recursion


Home Index