Nuprl Lemma : strat2play-add
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n + 1)]. ∀[moves:strat2play(g;n;s)].
  ∀[x,y:Pos(g)].
    (seq-add(seq-add(moves;x);y) ∈ strat2play(g;n + 1;s)) supposing ((x = (s moves) ∈ Pos(g)) and Legal1(x;y)) 
  supposing ||moves|| = ((2 * n) + 2) ∈ ℤ
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
play-len: ||moves||
, 
sg-legal1: Legal1(x;y)
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
seq-add: seq-add(s;x)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cand: A c∧ B
, 
play-truncate: play-truncate(f;m)
, 
assert: ↑b
, 
bnot: ¬bb
, 
pi1: fst(t)
, 
seq-truncate: seq-truncate(s;n)
, 
seq-add: seq-add(s;x)
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
play-item: moves[i]
, 
play-len: ||moves||
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
strat2play: strat2play(g;n;s)
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
sq_type: SQType(T)
, 
guard: {T}
, 
top: Top
, 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtract: n - m
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
win2strat: win2strat(g;n)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seq-add-item, 
multiply_nat_wf, 
add_nat_wf, 
mul_bounds_1a, 
seq-item_wf, 
int_seg_wf, 
assert-bnot, 
bool_cases_sqequal, 
assert_of_lt_int, 
lt_int_wf, 
sequence_wf, 
seq-add-len, 
seq-len_wf, 
seq-add_wf, 
strat2play-longer, 
multiply-is-int-iff, 
set_subtype_base, 
add-is-int-iff, 
strat2play_subtype, 
strat2play-add1, 
uiff_transitivity, 
sg-legal1_wf, 
nat_properties, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
bool_cases, 
less-iff-le, 
less_than_wf, 
omega-shadow, 
minus-zero, 
two-mul, 
one-mul, 
le_reflexive, 
subtype_rel_self, 
not-equal-implies-less, 
lelt_wf, 
le-add-cancel2, 
mul-distributes-right, 
mul-associates, 
not-lt-2, 
decidable__lt, 
le_weakening2, 
subtract_wf, 
play-item_wf, 
sg-legal2_wf, 
sg-pos_wf, 
mul-commutes, 
mul-distributes, 
int_subtype_base, 
subtype_base_sq, 
add-subtract-cancel, 
equal-wf-T-base, 
not_wf, 
bnot_wf, 
assert_wf, 
le_antisymmetry_iff, 
eq_int_wf, 
simple-game_wf, 
win2strat_wf, 
nat_wf, 
strat2play_wf, 
zero-mul, 
add-mul-special, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le, 
win2strat_subtype, 
play-len_wf, 
equal_wf
Rules used in proof : 
hyp_replacement, 
productEquality, 
functionEquality, 
functionExtensionality, 
dependent_pairEquality, 
closedConclusion, 
baseApply, 
applyLambdaEquality, 
equalityElimination, 
dependentIntersection_memberEquality, 
axiomEquality, 
impliesFunctionality, 
promote_hyp, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
setEquality, 
cumulativity, 
instantiate, 
dependentIntersectionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
multiplyEquality, 
minusEquality, 
because_Cache, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
applyEquality, 
hypothesisEquality, 
intEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n  +  1)].  \mforall{}[moves:strat2play(g;n;s)].
    \mforall{}[x,y:Pos(g)].
        (seq-add(seq-add(moves;x);y)  \mmember{}  strat2play(g;n  +  1;s))  supposing 
              ((x  =  (s  moves))  and 
              Legal1(x;y)) 
    supposing  ||moves||  =  ((2  *  n)  +  2)
Date html generated:
2018_07_25-PM-01_33_33
Last ObjectModification:
2018_06_25-AM-11_35_04
Theory : co-recursion
Home
Index