Nuprl Lemma : play-len_wf
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)].  (||f|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
play-len: ||moves||
, 
simple-game: SimpleGame
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
win2strat-strat2play-wf, 
nat_wf, 
simple-game_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].    (||f||  \mmember{}  \mBbbZ{})
Date html generated:
2018_07_25-PM-01_32_13
Last ObjectModification:
2018_06_12-AM-09_57_30
Theory : co-recursion
Home
Index