Nuprl Lemma : sg-legal1_wf

[g:SimpleGame]. ∀[x,y:Pos(g)].  (Legal1(x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  sg-legal1: Legal1(x;y) sg-pos: Pos(g) simple-game: SimpleGame uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sg-legal1: Legal1(x;y) simple-game: SimpleGame pi2: snd(t) pi1: fst(t) sg-pos: Pos(g)
Lemmas referenced :  sg-pos_wf simple-game_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination isect_memberEquality because_Cache

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[x,y:Pos(g)].    (Legal1(x;y)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_31_12
Last ObjectModification: 2018_06_06-AM-10_44_06

Theory : co-recursion


Home Index