Nuprl Lemma : play-item_wf

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[i:ℕ(2 n) 2].  (moves[i] ∈ Pos(g))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] sg-pos: Pos(g) simple-game: SimpleGame int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T multiply: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: prop: so_apply: x[s] all: x:A. B[x] implies:  Q play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  strat2play_subtype set_wf sequence_wf sg-pos_wf le_wf seq-len_wf nat_wf seq-item_wf add-is-int-iff set_subtype_base int_subtype_base multiply-is-int-iff less_than_transitivity1 lelt_wf equal_wf int_seg_wf strat2play_wf win2strat_wf simple-game_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule lambdaEquality addEquality multiplyEquality natural_numberEquality setElimination rename because_Cache lambdaFormation dependent_set_memberEquality productElimination independent_pairFormation baseApply closedConclusion baseClosed intEquality independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[i:\mBbbN{}(2  *  n)  +  2].
    (moves[i]  \mmember{}  Pos(g))



Date html generated: 2018_07_25-PM-01_32_41
Last ObjectModification: 2018_06_11-PM-10_13_05

Theory : co-recursion


Home Index