Nuprl Lemma : play-item_wf
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[i:ℕ(2 * n) + 2].  (moves[i] ∈ Pos(g))
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
play-item: moves[i]
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
play-item: moves[i]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
guard: {T}
Lemmas referenced : 
strat2play_subtype, 
set_wf, 
sequence_wf, 
sg-pos_wf, 
le_wf, 
seq-len_wf, 
nat_wf, 
seq-item_wf, 
add-is-int-iff, 
set_subtype_base, 
int_subtype_base, 
multiply-is-int-iff, 
less_than_transitivity1, 
lelt_wf, 
equal_wf, 
int_seg_wf, 
strat2play_wf, 
win2strat_wf, 
simple-game_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[i:\mBbbN{}(2  *  n)  +  2].
    (moves[i]  \mmember{}  Pos(g))
Date html generated:
2018_07_25-PM-01_32_41
Last ObjectModification:
2018_06_11-PM-10_13_05
Theory : co-recursion
Home
Index