Nuprl Lemma : seq-add_wf
∀[T:Type]. ∀[s:sequence(T)]. ∀[x:T].  (seq-add(s;x) ∈ sequence(T))
Proof
Definitions occuring in Statement : 
seq-add: seq-add(s;x), 
sequence: sequence(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
bfalse: ff, 
lelt: i ≤ j < k, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
int_seg: {i..j-}, 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
top: Top, 
subtype_rel: A ⊆r B, 
subtract: n - m, 
squash: ↓T, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
prop: ℙ, 
false: False, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
nat: ℕ, 
sequence: sequence(T), 
seq-add: seq-add(s;x), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
sequence_wf, 
equal_wf, 
less_than_wf, 
and_wf, 
int_seg_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le
Rules used in proof : 
universeEquality, 
axiomEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
equalityElimination, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
isectElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[x:T].    (seq-add(s;x)  \mmember{}  sequence(T))
Date html generated:
2018_07_25-PM-01_29_41
Last ObjectModification:
2018_06_19-AM-10_13_15
Theory : arithmetic
Home
Index