Nuprl Lemma : seq-add_wf

[T:Type]. ∀[s:sequence(T)]. ∀[x:T].  (seq-add(s;x) ∈ sequence(T))


Proof




Definitions occuring in Statement :  seq-add: seq-add(s;x) sequence: sequence(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  bfalse: ff lelt: i ≤ j < k ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m squash: T sq_stable: SqStable(P) uimplies: supposing a uiff: uiff(P;Q) prop: false: False implies:  Q rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: sequence: sequence(T) seq-add: seq-add(s;x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sequence_wf equal_wf less_than_wf and_wf int_seg_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le
Rules used in proof :  universeEquality axiomEquality functionEquality equalitySymmetry equalityTransitivity functionExtensionality equalityElimination minusEquality intEquality voidEquality isect_memberEquality lambdaEquality applyEquality imageElimination baseClosed imageMemberEquality isectElimination independent_isectElimination independent_functionElimination voidElimination lambdaFormation independent_pairFormation unionElimination hypothesisEquality dependent_functionElimination extract_by_obid natural_numberEquality hypothesis because_Cache rename setElimination addEquality dependent_set_memberEquality dependent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[x:T].    (seq-add(s;x)  \mmember{}  sequence(T))



Date html generated: 2018_07_25-PM-01_29_41
Last ObjectModification: 2018_06_19-AM-10_13_15

Theory : arithmetic


Home Index