Nuprl Lemma : strat2play-add1
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[x:Pos(g)].
  (seq-add(moves;x) ∈ strat2play(g;n;s))
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s), 
win2strat: win2strat(g;n), 
sg-pos: Pos(g), 
simple-game: SimpleGame, 
seq-add: seq-add(s;x), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
lelt: i ≤ j < k, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
int_seg: {i..j-}, 
pi1: fst(t), 
seq-truncate: seq-truncate(s;n), 
seq-add: seq-add(s;x), 
seq-len: ||s||, 
sequence: sequence(T), 
true: True, 
less_than': less_than'(a;b), 
subtract: n - m, 
prop: ℙ, 
false: False, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
le: A ≤ B, 
top: Top, 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
sequence_wf, 
le-add-cancel, 
add-associates, 
add-zero, 
zero-mul, 
add-mul-special, 
add-commutes, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
seq-len_wf, 
minus-add, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
multiply-is-int-iff, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
add-is-int-iff, 
seq-add-len, 
simple-game_wf, 
nat_wf, 
win2strat_wf, 
strat2play_wf, 
sg-pos_wf, 
seq-add_wf, 
strat2play_subtype, 
strat2play-longer
Rules used in proof : 
functionEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
functionExtensionality, 
dependent_pairEquality, 
multiplyEquality, 
because_Cache, 
minusEquality, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
addEquality, 
dependent_functionElimination, 
natural_numberEquality, 
lambdaEquality, 
intEquality, 
closedConclusion, 
baseApply, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
independent_isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
rename, 
setElimination, 
applyLambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[x:Pos(g)].
    (seq-add(moves;x)  \mmember{}  strat2play(g;n;s))
Date html generated:
2018_07_25-PM-01_33_27
Last ObjectModification:
2018_06_25-AM-10_53_07
Theory : co-recursion
Home
Index