Nuprl Lemma : strat2play-add1

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[moves:strat2play(g;n;s)]. ∀[x:Pos(g)].
  (seq-add(moves;x) ∈ strat2play(g;n;s))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) sg-pos: Pos(g) simple-game: SimpleGame seq-add: seq-add(s;x) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  lelt: i ≤ j < k assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} pi1: fst(t) seq-truncate: seq-truncate(s;n) seq-add: seq-add(s;x) seq-len: ||s|| sequence: sequence(T) true: True less_than': less_than'(a;b) subtract: m prop: false: False implies:  Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] nat: le: A ≤ B top: Top and: P ∧ Q uimplies: supposing a squash: T subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf sequence_wf le-add-cancel add-associates add-zero zero-mul add-mul-special add-commutes minus-one-mul-top add-swap minus-one-mul seq-len_wf minus-add condition-implies-le not-le-2 false_wf decidable__le multiply-is-int-iff int_subtype_base le_wf set_subtype_base add-is-int-iff seq-add-len simple-game_wf nat_wf win2strat_wf strat2play_wf sg-pos_wf seq-add_wf strat2play_subtype strat2play-longer
Rules used in proof :  functionEquality cumulativity instantiate promote_hyp dependent_pairFormation equalityElimination functionExtensionality dependent_pairEquality multiplyEquality because_Cache minusEquality independent_functionElimination lambdaFormation independent_pairFormation unionElimination addEquality dependent_functionElimination natural_numberEquality lambdaEquality intEquality closedConclusion baseApply voidEquality voidElimination isect_memberEquality equalitySymmetry equalityTransitivity productElimination independent_isectElimination imageElimination baseClosed imageMemberEquality rename setElimination applyLambdaEquality sqequalRule applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[moves:strat2play(g;n;s)].  \mforall{}[x:Pos(g)].
    (seq-add(moves;x)  \mmember{}  strat2play(g;n;s))



Date html generated: 2018_07_25-PM-01_33_27
Last ObjectModification: 2018_06_25-AM-10_53_07

Theory : co-recursion


Home Index