Nuprl Lemma : coW-play-invariant

āˆ€[A:š•Œ']
  āˆ€B:A āŸ¶ Type. āˆ€w,w':coW(A;a.B[a]). āˆ€n:ā„•. āˆ€s:win2strat(coW-game(a.B[a];w;w');n).
  āˆ€moves:strat2play(coW-game(a.B[a];w;w');n;s). āˆ€i:ā„•.
    (((i ā‰¤ n)
    ā‡’ (coW-pos-lens(moves[2 i];i;i)
       āˆ§ (coW-pos-lens(moves[(2 i) 1];i;i 1) āˆØ coW-pos-lens(moves[(2 i) 1];i 1;i))))
    āˆ§ ((i ā‰¤ ((2 n) 1)) ā‡’ (āˆ€j:ā„•1. coW-pos-agree(a.B[a];w;w';moves[j];moves[i]))))


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-pos-lens: coW-pos-lens(p;i;j) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] int_seg: {i..j-} nat: ā„• uall: āˆ€[x:A]. B[x] so_apply: x[s] le: A ā‰¤ B all: āˆ€x:A. B[x] implies: ā‡’ Q or: P āˆØ Q and: P āˆ§ Q function: x:A āŸ¶ B[x] multiply: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  exists: āˆƒx:A. B[x] nequal: a ā‰  b āˆˆ  int_nzero: ā„¤-o sg-legal2: Legal2(x;y) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) sq_type: SQType(T) sg-legal1: Legal1(x;y) sg-pos: Pos(g) copath-length: copath-length(p) copath-nil: () pi2: snd(t) pi1: fst(t) coW-pos-lens: coW-pos-lens(p;i;j) sg-init: InitialPos(g) coW-game: coW-game(a.B[a];w;w') play-item: moves[i] cand: cāˆ§ B less_than: a < b nat_plus: ā„•+ squash: ā†“T sq_stable: SqStable(P) guard: {T} true: True top: Top subtract: m uimplies: supposing a uiff: uiff(P;Q) rev_implies: ā‡ Q iff: ā‡ā‡’ Q or: P āˆØ Q decidable: Dec(P) not: Ā¬A false: False less_than': less_than'(a;b) le: A ā‰¤ B lelt: i ā‰¤ j < k int_seg: {i..j-} subtype_rel: A āŠ†B nat: ā„• prop: ā„™ implies: ā‡’ Q and: P āˆ§ Q so_apply: x[s] so_lambda: Ī»2x.t[x] member: t āˆˆ T all: āˆ€x:A. B[x] uall: āˆ€[x:A]. B[x]
Lemmas referenced :  coW-pos-agree_transitivity not-equal-implies-less not-equal-2 sq_stable__copathAgree and_wf rem_bounds_1 div_bounds_1 nequal_wf equal-wf-base div_rem_sum le_weakening2 subtract-add-cancel less_than_irreflexivity less_than_transitivity1 int_seg_cases int_seg_subtype copathAgree_refl minus-zero int_seg_properties equal-wf-base-T copath-nil_wf copathAgree_wf copath_wf equal-wf-T-base le_antisymmetry_iff copath-length_wf decidable__int_equal subtype_base_sq simple-game_wf sg-legal1_wf iff_weakening_equal subtype_rel_self sg-pos_wf true_wf squash_wf nat_properties le-add-cancel-alt mul-swap omega-shadow zero-mul mul-distributes-right two-mul add-mul-special one-mul le_reflexive mul-commutes mul-distributes coW_wf win2strat_wf strat2play_wf primrec-wf2 less_than_wf set_wf le-add-cancel2 mul-associates not-lt-2 decidable__lt multiply-is-int-iff int_subtype_base set_subtype_base add-is-int-iff coW-pos-agree_wf int_seg_wf all_wf equal_wf sq_stable__le nat_wf multiply_nat_wf add_nat_wf or_wf lelt_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le false_wf mul_bounds_1a play-item_wf coW-pos-lens_wf subtract_wf le_wf coW-game_wf strat2play-invariant-1
Rules used in proof :  applyLambdaEquality hyp_replacement remainderEquality sqequalIntensionalEquality dependent_pairFormation divideEquality andLevelFunctionality orFunctionality equalityUniverse promote_hyp axiomEquality independent_pairEquality hypothesis_subsumption inrFormation inlFormation levelHypothesis addLevel closedConclusion baseApply equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality minusEquality intEquality voidEquality isect_memberEquality addEquality independent_isectElimination independent_functionElimination voidElimination unionElimination independent_pairFormation multiplyEquality dependent_set_memberEquality functionExtensionality instantiate universeEquality cumulativity because_Cache natural_numberEquality functionEquality productEquality setElimination rename productElimination hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(coW-game(a.B[a];w;w');n).
    \mforall{}moves:strat2play(coW-game(a.B[a];w;w');n;s).  \mforall{}i:\mBbbN{}.
        (((i  \mleq{}  n)
        {}\mRightarrow{}  (coW-pos-lens(moves[2  *  i];i;i)
              \mwedge{}  (coW-pos-lens(moves[(2  *  i)  +  1];i;i  +  1)  \mvee{}  coW-pos-lens(moves[(2  *  i)  +  1];i  +  1;i))))
        \mwedge{}  ((i  \mleq{}  ((2  *  n)  +  1))  {}\mRightarrow{}  (\mforall{}j:\mBbbN{}i  +  1.  coW-pos-agree(a.B[a];w;w';moves[j];moves[i]))))



Date html generated: 2018_07_25-PM-01_43_44
Last ObjectModification: 2018_06_16-PM-00_20_17

Theory : co-recursion


Home Index