Nuprl Lemma : coW-play-invariant

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀n:ℕ. ∀s:win2strat(coW-game(a.B[a];w;w');n).
  ∀moves:strat2play(coW-game(a.B[a];w;w');n;s). ∀i:ℕ.
    (((i ≤ n)
     (coW-pos-lens(moves[2 i];i;i)
       ∧ (coW-pos-lens(moves[(2 i) 1];i;i 1) ∨ coW-pos-lens(moves[(2 i) 1];i 1;i))))
    ∧ ((i ≤ ((2 n) 1))  (∀j:ℕ1. coW-pos-agree(a.B[a];w;w';moves[j];moves[i]))))


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-pos-lens: coW-pos-lens(p;i;j) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] multiply: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  exists: x:A. B[x] nequal: a ≠ b ∈  int_nzero: -o sg-legal2: Legal2(x;y) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) sq_type: SQType(T) sg-legal1: Legal1(x;y) sg-pos: Pos(g) copath-length: copath-length(p) copath-nil: () pi2: snd(t) pi1: fst(t) coW-pos-lens: coW-pos-lens(p;i;j) sg-init: InitialPos(g) coW-game: coW-game(a.B[a];w;w') play-item: moves[i] cand: c∧ B less_than: a < b nat_plus: + squash: T sq_stable: SqStable(P) guard: {T} true: True top: Top subtract: m uimplies: supposing a uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B nat: prop: implies:  Q and: P ∧ Q so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW-pos-agree_transitivity not-equal-implies-less not-equal-2 sq_stable__copathAgree and_wf rem_bounds_1 div_bounds_1 nequal_wf equal-wf-base div_rem_sum le_weakening2 subtract-add-cancel less_than_irreflexivity less_than_transitivity1 int_seg_cases int_seg_subtype copathAgree_refl minus-zero int_seg_properties equal-wf-base-T copath-nil_wf copathAgree_wf copath_wf equal-wf-T-base le_antisymmetry_iff copath-length_wf decidable__int_equal subtype_base_sq simple-game_wf sg-legal1_wf iff_weakening_equal subtype_rel_self sg-pos_wf true_wf squash_wf nat_properties le-add-cancel-alt mul-swap omega-shadow zero-mul mul-distributes-right two-mul add-mul-special one-mul le_reflexive mul-commutes mul-distributes coW_wf win2strat_wf strat2play_wf primrec-wf2 less_than_wf set_wf le-add-cancel2 mul-associates not-lt-2 decidable__lt multiply-is-int-iff int_subtype_base set_subtype_base add-is-int-iff coW-pos-agree_wf int_seg_wf all_wf equal_wf sq_stable__le nat_wf multiply_nat_wf add_nat_wf or_wf lelt_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le false_wf mul_bounds_1a play-item_wf coW-pos-lens_wf subtract_wf le_wf coW-game_wf strat2play-invariant-1
Rules used in proof :  applyLambdaEquality hyp_replacement remainderEquality sqequalIntensionalEquality dependent_pairFormation divideEquality andLevelFunctionality orFunctionality equalityUniverse promote_hyp axiomEquality independent_pairEquality hypothesis_subsumption inrFormation inlFormation levelHypothesis addLevel closedConclusion baseApply equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality minusEquality intEquality voidEquality isect_memberEquality addEquality independent_isectElimination independent_functionElimination voidElimination unionElimination independent_pairFormation multiplyEquality dependent_set_memberEquality functionExtensionality instantiate universeEquality cumulativity because_Cache natural_numberEquality functionEquality productEquality setElimination rename productElimination hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(coW-game(a.B[a];w;w');n).
    \mforall{}moves:strat2play(coW-game(a.B[a];w;w');n;s).  \mforall{}i:\mBbbN{}.
        (((i  \mleq{}  n)
        {}\mRightarrow{}  (coW-pos-lens(moves[2  *  i];i;i)
              \mwedge{}  (coW-pos-lens(moves[(2  *  i)  +  1];i;i  +  1)  \mvee{}  coW-pos-lens(moves[(2  *  i)  +  1];i  +  1;i))))
        \mwedge{}  ((i  \mleq{}  ((2  *  n)  +  1))  {}\mRightarrow{}  (\mforall{}j:\mBbbN{}i  +  1.  coW-pos-agree(a.B[a];w;w';moves[j];moves[i]))))



Date html generated: 2018_07_25-PM-01_43_44
Last ObjectModification: 2018_06_16-PM-00_20_17

Theory : co-recursion


Home Index