Nuprl Lemma : coW-pos-agree_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])]. ∀[p,q:Pos(coW-game(a.B[a];w;w'))].  (coW-pos-agree(a.B[a];w;w';p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-pos: Pos(g) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q prop: coW-game: coW-game(a.B[a];w;w') pi1: fst(t) sg-pos: Pos(g) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coW-game_wf sg-pos_wf copathAgree_wf nat_wf copath-length_wf le_wf
Rules used in proof :  universeEquality functionEquality cumulativity instantiate isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache rename setElimination hypothesis applyEquality lambdaEquality hypothesisEquality isectElimination extract_by_obid productEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].  \mforall{}[p,q:Pos(coW-game(a.B[a];w;w'))].
    (coW-pos-agree(a.B[a];w;w';p;q)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_43_02
Last ObjectModification: 2018_06_20-PM-02_47_02

Theory : co-recursion


Home Index