Nuprl Lemma : coW-pos-lens_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])]. ∀[p:Pos(coW-game(a.B[a];w;w'))]. ∀[i,j:ℤ].  (coW-pos-lens(p;i;j) ∈ ℙ)


Proof




Definitions occuring in Statement :  coW-pos-lens: coW-pos-lens(p;i;j) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-pos: Pos(g) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q prop: coW-game: coW-game(a.B[a];w;w') pi1: fst(t) sg-pos: Pos(g) coW-pos-lens: coW-pos-lens(p;i;j) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coW-game_wf sg-pos_wf int_subtype_base nat_wf copath-length_wf equal-wf-T-base
Rules used in proof :  universeEquality functionEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache rename setElimination hypothesis applyEquality lambdaEquality hypothesisEquality cumulativity instantiate intEquality isectElimination extract_by_obid productEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].  \mforall{}[p:Pos(coW-game(a.B[a];w;w'))].  \mforall{}[i,j:\mBbbZ{}].
    (coW-pos-lens(p;i;j)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_42_54
Last ObjectModification: 2018_06_16-AM-09_40_44

Theory : co-recursion


Home Index