Nuprl Lemma : coW-pos-lens_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])]. ∀[p:Pos(coW-game(a.B[a];w;w'))]. ∀[i,j:ℤ]. (coW-pos-lens(p;i;j) ∈ ℙ)
Proof
Definitions occuring in Statement :
coW-pos-lens: coW-pos-lens(p;i;j)
,
coW-game: coW-game(a.B[a];w;w')
,
coW: coW(A;a.B[a])
,
sg-pos: Pos(g)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
nat: ℕ
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
prop: ℙ
,
coW-game: coW-game(a.B[a];w;w')
,
pi1: fst(t)
,
sg-pos: Pos(g)
,
coW-pos-lens: coW-pos-lens(p;i;j)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
coW_wf,
coW-game_wf,
sg-pos_wf,
int_subtype_base,
nat_wf,
copath-length_wf,
equal-wf-T-base
Rules used in proof :
universeEquality,
functionEquality,
isect_memberEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
because_Cache,
rename,
setElimination,
hypothesis,
applyEquality,
lambdaEquality,
hypothesisEquality,
cumulativity,
instantiate,
intEquality,
isectElimination,
extract_by_obid,
productEquality,
thin,
productElimination,
sqequalHypSubstitution,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[w,w':coW(A;a.B[a])]. \mforall{}[p:Pos(coW-game(a.B[a];w;w'))]. \mforall{}[i,j:\mBbbZ{}].
(coW-pos-lens(p;i;j) \mmember{} \mBbbP{})
Date html generated:
2018_07_25-PM-01_42_54
Last ObjectModification:
2018_06_16-AM-09_40_44
Theory : co-recursion
Home
Index