Nuprl Lemma : coW-pos-lens_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])]. ∀[p:Pos(coW-game(a.B[a];w;w'))]. ∀[i,j:ℤ].  (coW-pos-lens(p;i;j) ∈ ℙ)
Proof
Definitions occuring in Statement : 
coW-pos-lens: coW-pos-lens(p;i;j)
, 
coW-game: coW-game(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
sg-pos: Pos(g)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
coW-game: coW-game(a.B[a];w;w')
, 
pi1: fst(t)
, 
sg-pos: Pos(g)
, 
coW-pos-lens: coW-pos-lens(p;i;j)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
coW-game_wf, 
sg-pos_wf, 
int_subtype_base, 
nat_wf, 
copath-length_wf, 
equal-wf-T-base
Rules used in proof : 
universeEquality, 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
instantiate, 
intEquality, 
isectElimination, 
extract_by_obid, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].  \mforall{}[p:Pos(coW-game(a.B[a];w;w'))].  \mforall{}[i,j:\mBbbZ{}].
    (coW-pos-lens(p;i;j)  \mmember{}  \mBbbP{})
Date html generated:
2018_07_25-PM-01_42_54
Last ObjectModification:
2018_06_16-AM-09_40_44
Theory : co-recursion
Home
Index