Nuprl Lemma : div_bounds_1

[a:ℕ]. ∀[n:ℕ+].  (0 ≤ (a ÷ n))


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + nat: le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nequal: a ≠ b ∈  guard: {T} uimplies: supposing a all: x:A. B[x] prop: int_nzero: -o ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True cand: c∧ B sq_type: SQType(T)
Lemmas referenced :  zero-mul add-mul-special le_transitivity subtype_base_sq le_reflexive multiply-is-int-iff mul-commutes le-add-cancel add_functionality_wrt_le minus-one-mul-top minus-one-mul int_subtype_base add-is-int-iff zero-add add-associates add-commutes add-swap minus-minus minus-add add-zero minus-zero condition-implies-le not-le-2 false_wf le_weakening2 mul_preserves_le decidable__le less_than_wf le_wf rem_bounds_1 nequal_wf div_rem_sum nat_wf nat_plus_wf equal_wf less_than_irreflexivity le_weakening less_than_transitivity1 less_than'_wf nat_properties nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache divideEquality lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination intEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependent_set_memberEquality unionElimination minusEquality independent_pairFormation addEquality applyEquality voidEquality baseApply closedConclusion baseClosed multiplyEquality instantiate cumulativity

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (0  \mleq{}  (a  \mdiv{}  n))



Date html generated: 2016_05_13-PM-03_35_04
Last ObjectModification: 2016_01_14-PM-06_40_02

Theory : arithmetic


Home Index