Nuprl Lemma : div_bounds_1
∀[a:ℕ]. ∀[n:ℕ+].  (0 ≤ (a ÷ n))
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
divide: n ÷ m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
, 
sq_type: SQType(T)
Lemmas referenced : 
zero-mul, 
add-mul-special, 
le_transitivity, 
subtype_base_sq, 
le_reflexive, 
multiply-is-int-iff, 
mul-commutes, 
le-add-cancel, 
add_functionality_wrt_le, 
minus-one-mul-top, 
minus-one-mul, 
int_subtype_base, 
add-is-int-iff, 
zero-add, 
add-associates, 
add-commutes, 
add-swap, 
minus-minus, 
minus-add, 
add-zero, 
minus-zero, 
condition-implies-le, 
not-le-2, 
false_wf, 
le_weakening2, 
mul_preserves_le, 
decidable__le, 
less_than_wf, 
le_wf, 
rem_bounds_1, 
nequal_wf, 
div_rem_sum, 
nat_wf, 
nat_plus_wf, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
less_than'_wf, 
nat_properties, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
divideEquality, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
dependent_set_memberEquality, 
unionElimination, 
minusEquality, 
independent_pairFormation, 
addEquality, 
applyEquality, 
voidEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
multiplyEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (0  \mleq{}  (a  \mdiv{}  n))
Date html generated:
2016_05_13-PM-03_35_04
Last ObjectModification:
2016_01_14-PM-06_40_02
Theory : arithmetic
Home
Index