Nuprl Lemma : coWtransInvariant_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])]. ∀[k:ℕ]. ∀[X:win2strat(coW-game(a.B[a];w1;w2);k 1)].
[Y:win2strat(coW-game(a.B[a];w2;w3);k 1)]. ∀[a:strat2play(coW-game(a.B[a];w1;w2);k;X)].
[b:strat2play(coW-game(a.B[a];w2;w3);k;Y)]. ∀[m1:sequence(Pos(coW-game(a.B[a];w1;w3)))].
  coWtransInvariant(a.B[a];w1;w2;w3;k;X;Y;a;b;m1) ∈ ℙ supposing ((2 k) 2) ≤ ||m1||


Proof




Definitions occuring in Statement :  coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) sg-pos: Pos(g) seq-len: ||s|| sequence: sequence(T) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] le: A ≤ B member: t ∈ T function: x:A ⟶ B[x] multiply: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  less_than: a < b ge: i ≥  exists: x:A. B[x] sq_type: SQType(T) nat_plus: + pi2: snd(t) pi1: fst(t) sg-pos: Pos(g) coW-game: coW-game(a.B[a];w;w') guard: {T} lelt: i ≤ j < k int_seg: {i..j-} true: True less_than': less_than'(a;b) top: Top subtract: m squash: T sq_stable: SqStable(P) prop: false: False implies:  Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B nat: so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_properties omega-shadow minus-zero two-mul one-mul le_reflexive le_weakening2 sg-legal2_wf set_wf subtype_base_sq mul-commutes mul-distributes minus-minus subtract_wf less_than_wf win2strat-properties coW_wf win2strat_wf strat2play_wf copath-length_wf or_wf seq-len_wf sequence_wf subtype_rel_self seq-item_wf copath_wf play-len_wf sg-pos_wf lelt_wf le-add-cancel2 mul-distributes-right mul-associates not-lt-2 decidable__lt equal_wf nat_wf multiply_nat_wf add_nat_wf zero-mul add-mul-special multiply-is-int-iff set_subtype_base le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le int_subtype_base add-is-int-iff coW-game_wf win2strat_subtype play-item_wf
Rules used in proof :  promote_hyp sqequalIntensionalEquality dependent_pairFormation setEquality universeEquality functionEquality instantiate cumulativity axiomEquality independent_pairEquality functionExtensionality productEquality equalitySymmetry equalityTransitivity multiplyEquality minusEquality intEquality voidEquality isect_memberEquality imageElimination imageMemberEquality independent_functionElimination voidElimination lambdaFormation independent_pairFormation unionElimination dependent_functionElimination independent_isectElimination baseClosed closedConclusion baseApply productElimination natural_numberEquality rename setElimination addEquality dependent_set_memberEquality hypothesis lambdaEquality sqequalRule applyEquality hypothesisEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].  \mforall{}[k:\mBbbN{}].  \mforall{}[X:win2strat(coW-game(a.B[a];w1;w2);k
                                                                                                                                +  1)].
\mforall{}[Y:win2strat(coW-game(a.B[a];w2;w3);k  +  1)].  \mforall{}[a:strat2play(coW-game(a.B[a];w1;w2);k;X)].
\mforall{}[b:strat2play(coW-game(a.B[a];w2;w3);k;Y)].  \mforall{}[m1:sequence(Pos(coW-game(a.B[a];w1;w3)))].
    coWtransInvariant(a.B[a];w1;w2;w3;k;X;Y;a;b;m1)  \mmember{}  \mBbbP{}  supposing  ((2  *  k)  +  2)  \mleq{}  ||m1||



Date html generated: 2018_07_25-PM-01_43_53
Last ObjectModification: 2018_07_09-PM-11_08_44

Theory : co-recursion


Home Index