Nuprl Lemma : coWtransInvariant_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])]. ∀[k:ℕ]. ∀[X:win2strat(coW-game(a.B[a];w1;w2);k + 1)].
∀[Y:win2strat(coW-game(a.B[a];w2;w3);k + 1)]. ∀[a:strat2play(coW-game(a.B[a];w1;w2);k;X)].
∀[b:strat2play(coW-game(a.B[a];w2;w3);k;Y)]. ∀[m1:sequence(Pos(coW-game(a.B[a];w1;w3)))].
  coWtransInvariant(a.B[a];w1;w2;w3;k;X;Y;a;b;m1) ∈ ℙ supposing ((2 * k) + 2) ≤ ||m1||
Proof
Definitions occuring in Statement : 
coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves)
, 
coW-game: coW-game(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
sg-pos: Pos(g)
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
less_than: a < b
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
sg-pos: Pos(g)
, 
coW-game: coW-game(a.B[a];w;w')
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtract: n - m
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_properties, 
omega-shadow, 
minus-zero, 
two-mul, 
one-mul, 
le_reflexive, 
le_weakening2, 
sg-legal2_wf, 
set_wf, 
subtype_base_sq, 
mul-commutes, 
mul-distributes, 
minus-minus, 
subtract_wf, 
less_than_wf, 
win2strat-properties, 
coW_wf, 
win2strat_wf, 
strat2play_wf, 
copath-length_wf, 
or_wf, 
seq-len_wf, 
sequence_wf, 
subtype_rel_self, 
seq-item_wf, 
copath_wf, 
play-len_wf, 
sg-pos_wf, 
lelt_wf, 
le-add-cancel2, 
mul-distributes-right, 
mul-associates, 
not-lt-2, 
decidable__lt, 
equal_wf, 
nat_wf, 
multiply_nat_wf, 
add_nat_wf, 
zero-mul, 
add-mul-special, 
multiply-is-int-iff, 
set_subtype_base, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le, 
int_subtype_base, 
add-is-int-iff, 
coW-game_wf, 
win2strat_subtype, 
play-item_wf
Rules used in proof : 
promote_hyp, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
setEquality, 
universeEquality, 
functionEquality, 
instantiate, 
cumulativity, 
axiomEquality, 
independent_pairEquality, 
functionExtensionality, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
multiplyEquality, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
imageElimination, 
imageMemberEquality, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
productElimination, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].  \mforall{}[k:\mBbbN{}].  \mforall{}[X:win2strat(coW-game(a.B[a];w1;w2);k
                                                                                                                                +  1)].
\mforall{}[Y:win2strat(coW-game(a.B[a];w2;w3);k  +  1)].  \mforall{}[a:strat2play(coW-game(a.B[a];w1;w2);k;X)].
\mforall{}[b:strat2play(coW-game(a.B[a];w2;w3);k;Y)].  \mforall{}[m1:sequence(Pos(coW-game(a.B[a];w1;w3)))].
    coWtransInvariant(a.B[a];w1;w2;w3;k;X;Y;a;b;m1)  \mmember{}  \mBbbP{}  supposing  ((2  *  k)  +  2)  \mleq{}  ||m1||
Date html generated:
2018_07_25-PM-01_43_53
Last ObjectModification:
2018_07_09-PM-11_08_44
Theory : co-recursion
Home
Index