Nuprl Lemma : seq-truncate_wf
∀[T:Type]. ∀[s:sequence(T)]. ∀[n:ℕ].  seq-truncate(s;n) ∈ sequence(T) supposing n ≤ ||s||
Proof
Definitions occuring in Statement : 
seq-truncate: seq-truncate(s;n)
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
seq-truncate: seq-truncate(s;n)
, 
sequence: sequence(T)
, 
seq-len: ||s||
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
guard: {T}
Lemmas referenced : 
subtype_rel_dep_function, 
int_seg_wf, 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
less_than_transitivity1, 
seq-len_wf, 
nat_wf, 
sequence_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairEquality, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
intEquality, 
setEquality, 
lambdaFormation, 
independent_pairFormation, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[n:\mBbbN{}].    seq-truncate(s;n)  \mmember{}  sequence(T)  supposing  n  \mleq{}  ||s||
Date html generated:
2018_07_25-PM-01_28_37
Last ObjectModification:
2018_06_11-PM-11_29_45
Theory : arithmetic
Home
Index