Nuprl Lemma : seq-truncate_wf

[T:Type]. ∀[s:sequence(T)]. ∀[n:ℕ].  seq-truncate(s;n) ∈ sequence(T) supposing n ≤ ||s||


Proof




Definitions occuring in Statement :  seq-truncate: seq-truncate(s;n) seq-len: ||s|| sequence: sequence(T) nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a seq-truncate: seq-truncate(s;n) sequence: sequence(T) seq-len: ||s|| pi1: fst(t) subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q prop: all: x:A. B[x] implies:  Q le: A ≤ B guard: {T}
Lemmas referenced :  subtype_rel_dep_function int_seg_wf subtype_rel_sets and_wf le_wf less_than_wf less_than_transitivity1 seq-len_wf nat_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin dependent_pairEquality hypothesisEquality applyEquality extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesis lambdaEquality because_Cache independent_isectElimination intEquality setEquality lambdaFormation independent_pairFormation functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[n:\mBbbN{}].    seq-truncate(s;n)  \mmember{}  sequence(T)  supposing  n  \mleq{}  ||s||



Date html generated: 2018_07_25-PM-01_28_37
Last ObjectModification: 2018_06_11-PM-11_29_45

Theory : arithmetic


Home Index