Nuprl Lemma : coW-equiv_inversion

[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  (coW-equiv(a.B[a];w;w')  coW-equiv(a.B[a];w';w))


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q coW-equiv: coW-equiv(a.B[a];w;w') member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: isom-games: g1 ≅ g2 exists: x:A. B[x] sg-pos: Pos(g) pi1: fst(t) coW-game: coW-game(a.B[a];w;w') and: P ∧ Q sg-legal1: Legal1(x;y) pi2: snd(t) or: P ∨ Q guard: {T} cand: c∧ B subtype_rel: A ⊆B nat: sg-legal2: Legal2(x;y) sg-init: InitialPos(g)
Lemmas referenced :  isom-preserves-win2 coW-game_wf coW-equiv_wf coW_wf sg-pos_wf equal_wf copath-length_wf nat_wf copathAgree_wf copath_wf sg-legal1_wf sg-legal2_wf sg-init_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination instantiate cumulativity functionEquality universeEquality dependent_pairFormation spreadEquality productElimination independent_pairEquality independent_pairFormation unionElimination inrFormation productEquality intEquality setElimination rename addEquality because_Cache natural_numberEquality inlFormation equalitySymmetry functionExtensionality equalityTransitivity

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).    (coW-equiv(a.B[a];w;w')  {}\mRightarrow{}  coW-equiv(a.B[a];w';w))



Date html generated: 2018_07_25-PM-01_42_46
Last ObjectModification: 2018_07_11-PM-00_02_58

Theory : co-recursion


Home Index