Nuprl Lemma : coW-equiv_inversion
∀[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  (coW-equiv(a.B[a];w;w') 
⇒ coW-equiv(a.B[a];w';w))
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
isom-games: g1 ≅ g2
, 
exists: ∃x:A. B[x]
, 
sg-pos: Pos(g)
, 
pi1: fst(t)
, 
coW-game: coW-game(a.B[a];w;w')
, 
and: P ∧ Q
, 
sg-legal1: Legal1(x;y)
, 
pi2: snd(t)
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
sg-legal2: Legal2(x;y)
, 
sg-init: InitialPos(g)
Lemmas referenced : 
isom-preserves-win2, 
coW-game_wf, 
coW-equiv_wf, 
coW_wf, 
sg-pos_wf, 
equal_wf, 
copath-length_wf, 
nat_wf, 
copathAgree_wf, 
copath_wf, 
sg-legal1_wf, 
sg-legal2_wf, 
sg-init_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
instantiate, 
cumulativity, 
functionEquality, 
universeEquality, 
dependent_pairFormation, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
independent_pairFormation, 
unionElimination, 
inrFormation, 
productEquality, 
intEquality, 
setElimination, 
rename, 
addEquality, 
because_Cache, 
natural_numberEquality, 
inlFormation, 
equalitySymmetry, 
functionExtensionality, 
equalityTransitivity
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).    (coW-equiv(a.B[a];w;w')  {}\mRightarrow{}  coW-equiv(a.B[a];w';w))
Date html generated:
2018_07_25-PM-01_42_46
Last ObjectModification:
2018_07_11-PM-00_02_58
Theory : co-recursion
Home
Index