Nuprl Lemma : setmem-iff
∀x,s:coSet{i:l}.  ((x ∈ s) ⇐⇒ ∃t:set-dom(s). seteq(x;set-item(s;t)))
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
set-item: set-item(s;x), 
set-dom: set-dom(s), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
seteq: seteq(s1;s2), 
set-dom: set-dom(s), 
set-item: set-item(s;x), 
pi2: snd(t), 
pi1: fst(t), 
coW-dom: coW-dom(a.B[a];w), 
coW-item: coW-item(w;b), 
coWmem: coWmem(a.B[a];z;w), 
setmem: (x ∈ s), 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
seteq_wf, 
exists_wf, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
because_Cache, 
lambdaEquality, 
isectElimination, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,s:coSet\{i:l\}.    ((x  \mmember{}  s)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(s).  seteq(x;set-item(s;t)))
Date html generated:
2018_07_29-AM-09_50_01
Last ObjectModification:
2018_07_11-PM-00_20_54
Theory : constructive!set!theory
Home
Index