Nuprl Lemma : setmem-iff

x,s:coSet{i:l}.  ((x ∈ s) ⇐⇒ ∃t:set-dom(s). seteq(x;set-item(s;t)))


Proof




Definitions occuring in Statement :  setmem: (x ∈ s) seteq: seteq(s1;s2) set-item: set-item(s;x) set-dom: set-dom(s) coSet: coSet{i:l} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q seteq: seteq(s1;s2) set-dom: set-dom(s) set-item: set-item(s;x) pi2: snd(t) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) setmem: (x ∈ s) subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  coSet_wf seteq_wf exists_wf coSet_subtype subtype_coSet
Rules used in proof :  because_Cache lambdaEquality isectElimination independent_pairFormation thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction cut hypothesis_subsumption lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x,s:coSet\{i:l\}.    ((x  \mmember{}  s)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(s).  seteq(x;set-item(s;t)))



Date html generated: 2018_07_29-AM-09_50_01
Last ObjectModification: 2018_07_11-PM-00_20_54

Theory : constructive!set!theory


Home Index