Nuprl Lemma : setmem-iff
∀x,s:coSet{i:l}.  ((x ∈ s) 
⇐⇒ ∃t:set-dom(s). seteq(x;set-item(s;t)))
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
set-item: set-item(s;x)
, 
set-dom: set-dom(s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
seteq: seteq(s1;s2)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW-item: coW-item(w;b)
, 
coWmem: coWmem(a.B[a];z;w)
, 
setmem: (x ∈ s)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
seteq_wf, 
exists_wf, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
because_Cache, 
lambdaEquality, 
isectElimination, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,s:coSet\{i:l\}.    ((x  \mmember{}  s)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(s).  seteq(x;set-item(s;t)))
Date html generated:
2018_07_29-AM-09_50_01
Last ObjectModification:
2018_07_11-PM-00_20_54
Theory : constructive!set!theory
Home
Index