Nuprl Lemma : coSet_subtype
coSet{i:l} ⊆r (T:Type × (T ⟶ coSet{i:l}))
Proof
Definitions occuring in Statement : 
coSet: coSet{i:l}
, 
subtype_rel: A ⊆r B
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
subtype_rel_weakening, 
coW-ext
Rules used in proof : 
independent_isectElimination, 
functionEquality, 
productEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
cut
Latex:
coSet\{i:l\}  \msubseteq{}r  (T:Type  \mtimes{}  (T  {}\mrightarrow{}  coSet\{i:l\}))
Date html generated:
2018_07_29-AM-09_49_24
Last ObjectModification:
2018_07_10-PM-10_19_17
Theory : constructive!set!theory
Home
Index