Nuprl Lemma : coSet_subtype

coSet{i:l} ⊆(T:Type × (T ⟶ coSet{i:l}))


Proof




Definitions occuring in Statement :  coSet: coSet{i:l} subtype_rel: A ⊆B function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uimplies: supposing a guard: {T} coSet: coSet{i:l} so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf subtype_rel_weakening coW-ext
Rules used in proof :  independent_isectElimination functionEquality productEquality hypothesis hypothesisEquality cumulativity lambdaEquality sqequalRule universeEquality thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction instantiate cut

Latex:
coSet\{i:l\}  \msubseteq{}r  (T:Type  \mtimes{}  (T  {}\mrightarrow{}  coSet\{i:l\}))



Date html generated: 2018_07_29-AM-09_49_24
Last ObjectModification: 2018_07_10-PM-10_19_17

Theory : constructive!set!theory


Home Index