Nuprl Lemma : mk-coset_wf

[T:Type]. ∀[f:T ⟶ coSet{i:l}].  (mk-coset(T;f) ∈ coSet{i:l})


Proof




Definitions occuring in Statement :  mk-coset: mk-coset(T;f) coSet: coSet{i:l} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  subtype_rel: A ⊆B mk-coset: mk-coset(T;f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_coSet coSet_wf
Rules used in proof :  universeEquality because_Cache thin isectElimination isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality sqequalHypSubstitution applyEquality hypothesis extract_by_obid cumulativity functionEquality hypothesisEquality dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].    (mk-coset(T;f)  \mmember{}  coSet\{i:l\})



Date html generated: 2018_07_29-AM-09_49_34
Last ObjectModification: 2018_07_10-PM-10_24_48

Theory : constructive!set!theory


Home Index