Nuprl Lemma : mk-coset_wf
∀[T:Type]. ∀[f:T ⟶ coSet{i:l}].  (mk-coset(T;f) ∈ coSet{i:l})
Proof
Definitions occuring in Statement : 
mk-coset: mk-coset(T;f)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
mk-coset: mk-coset(T;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_coSet, 
coSet_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
thin, 
isectElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalHypSubstitution, 
applyEquality, 
hypothesis, 
extract_by_obid, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].    (mk-coset(T;f)  \mmember{}  coSet\{i:l\})
Date html generated:
2018_07_29-AM-09_49_34
Last ObjectModification:
2018_07_10-PM-10_24_48
Theory : constructive!set!theory
Home
Index