Nuprl Lemma : set-predicate_wf

[s:coSet{i:l}]. ∀[P:{x:coSet{i:l}| (x ∈ s)}  ⟶ ℙ'].  (set-predicate{i:l}(s;x.P[x]) ∈ ℙ')


Proof




Definitions occuring in Statement :  set-predicate: set-predicate{i:l}(s;a.P[a]) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] set-predicate: set-predicate{i:l}(s;a.P[a]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  seteq_wf setmem_wf coSet_wf all_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality setEquality equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality applyEquality hypothesisEquality cumulativity functionEquality lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:coSet\{i:l\}].  \mforall{}[P:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}'].    (set-predicate\{i:l\}(s;x.P[x])  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-09_52_08
Last ObjectModification: 2018_07_18-AM-09_52_58

Theory : constructive!set!theory


Home Index