Nuprl Lemma : co-seteq-iff

x,y:coSet{i:l}.  (seteq(x;y) ⇐⇒ ∀z:coSet{i:l}. ((z ∈ x) ⇐⇒ (z ∈ y)))


Proof




Definitions occuring in Statement :  setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  seteq: seteq(s1;s2) coSet: coSet{i:l} setmem: (x ∈ s) so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW-equiv-iff
Rules used in proof :  hypothesis hypothesisEquality lambdaEquality sqequalRule dependent_functionElimination universeEquality thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
\mforall{}x,y:coSet\{i:l\}.    (seteq(x;y)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}z:coSet\{i:l\}.  ((z  \mmember{}  x)  \mLeftarrow{}{}\mRightarrow{}  (z  \mmember{}  y)))



Date html generated: 2018_07_29-AM-09_50_05
Last ObjectModification: 2018_07_11-PM-00_39_34

Theory : constructive!set!theory


Home Index