Nuprl Lemma : coSet-subtype-corec
coSet{i:l} ⊆r corec(T.a:Type × (a ⟶ T))
Proof
Definitions occuring in Statement : 
coSet: coSet{i:l}
, 
corec: corec(T.F[T])
, 
subtype_rel: A ⊆r B
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-corec
Rules used in proof : 
productElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
coSet\{i:l\}  \msubseteq{}r  corec(T.a:Type  \mtimes{}  (a  {}\mrightarrow{}  T))
Date html generated:
2018_07_29-AM-09_49_27
Last ObjectModification:
2018_07_21-PM-07_14_03
Theory : constructive!set!theory
Home
Index