Nuprl Lemma : emptyset_wf
{} ∈ Set{i:l}
Proof
Definitions occuring in Statement : 
emptyset: {}
, 
Set: Set{i:l}
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
emptyset: {}
Lemmas referenced : 
it_wf, 
mkset_wf
Rules used in proof : 
because_Cache, 
voidElimination, 
applyEquality, 
hypothesis, 
lambdaEquality, 
voidEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\{\}  \mmember{}  Set\{i:l\}
Date html generated:
2018_05_29-PM-01_47_53
Last ObjectModification:
2018_05_24-PM-10_01_38
Theory : constructive!set!theory
Home
Index