Nuprl Lemma : emptyset_wf
{} ∈ Set{i:l}
Proof
Definitions occuring in Statement :
emptyset: {}
,
Set: Set{i:l}
,
member: t ∈ T
Definitions unfolded in proof :
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
emptyset: {}
Lemmas referenced :
it_wf,
mkset_wf
Rules used in proof :
because_Cache,
voidElimination,
applyEquality,
hypothesis,
lambdaEquality,
voidEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
computationStep,
sqequalTransitivity,
sqequalReflexivity,
sqequalRule,
sqequalSubstitution
Latex:
\{\} \mmember{} Set\{i:l\}
Date html generated:
2018_05_29-PM-01_47_53
Last ObjectModification:
2018_05_24-PM-10_01_38
Theory : constructive!set!theory
Home
Index