Nuprl Lemma : set-ext
Set{i:l} ≡ T:Type × (T ⟶ Set{i:l})
Proof
Definitions occuring in Statement : 
Set: Set{i:l}
, 
ext-eq: A ≡ B
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
W-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis
Latex:
Set\{i:l\}  \mequiv{}  T:Type  \mtimes{}  (T  {}\mrightarrow{}  Set\{i:l\})
Date html generated:
2018_05_22-PM-09_47_36
Last ObjectModification:
2018_05_16-PM-01_31_06
Theory : constructive!set!theory
Home
Index