Step
*
1
1
3
1
of Lemma
I-path-morph-id
.....subterm..... T:t
4:n
1. X : CubicalSet
2. A : {X ⊢ _}
3. a : {X ⊢ _:A}
4. b : {X ⊢ _:A}
5. I : Cname List
6. alpha : X(I)
7. z : {z:Cname| ¬(z ∈ I)}
8. w2 : named-path(X;A;a;b;I;alpha;z)
9. z1 : {z:Cname| ¬(z ∈ I)}
10. w3 : named-path(X;A;a;b;I;alpha;z1)
11. (w2 iota(z)(alpha) rename-one-name(z;z1)) = w3 ∈ A(iota(z1)(alpha))
12. v : Cname
13. ¬(v ∈ I)
14. ((w2 iota(z)(alpha) 1[z:=v]) 1[z:=v](iota(z)(alpha)) rename-one-name(v;z1))
= (w2 iota(z)(alpha) (1[z:=v] o rename-one-name(v;z1)))
∈ A((1[z:=v] o rename-one-name(v;z1))(iota(z)(alpha)))
⊢ iota(z1) = (iota(z) o rename-one-name(z;z1)) ∈ name-morph(I;[z1 / I])
BY
{ (DSetVars THEN (InstLemma `rename-one-iota` [⌜I⌝]⋅ THENA Auto) THEN RWO "-1" 0 THEN Auto) }
Latex:
Latex:
.....subterm..... T:t
4:n
1. X : CubicalSet
2. A : \{X \mvdash{} \_\}
3. a : \{X \mvdash{} \_:A\}
4. b : \{X \mvdash{} \_:A\}
5. I : Cname List
6. alpha : X(I)
7. z : \{z:Cname| \mneg{}(z \mmember{} I)\}
8. w2 : named-path(X;A;a;b;I;alpha;z)
9. z1 : \{z:Cname| \mneg{}(z \mmember{} I)\}
10. w3 : named-path(X;A;a;b;I;alpha;z1)
11. (w2 iota(z)(alpha) rename-one-name(z;z1)) = w3
12. v : Cname
13. \mneg{}(v \mmember{} I)
14. ((w2 iota(z)(alpha) 1[z:=v]) 1[z:=v](iota(z)(alpha)) rename-one-name(v;z1))
= (w2 iota(z)(alpha) (1[z:=v] o rename-one-name(v;z1)))
\mvdash{} iota(z1) = (iota(z) o rename-one-name(z;z1))
By
Latex:
(DSetVars THEN (InstLemma `rename-one-iota` [\mkleeneopen{}I\mkleeneclose{}]\mcdot{} THENA Auto) THEN RWO "-1" 0 THEN Auto)
Home
Index