Nuprl Lemma : I-path-morph-id

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:X(I). ∀w:cubical-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;I;1;alpha;w) w ∈ cubical-path(X;A;a;b;I;alpha))


Proof




Definitions occuring in Statement :  cubical-path: cubical-path(X;A;a;b;I;alpha) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet id-morph: 1 coordinate_name: Cname list: List all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cubical-path: cubical-path(X;A;a;b;I;alpha) quotient: x,y:A//B[x; y] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] implies:  Q I-path: I-path(X;A;a;b;I;alpha) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a not: ¬A false: False prop: subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) path-eq: path-eq(X;A;I;alpha;p;q) named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B named-path: named-path(X;A;a;b;I;alpha;z)
Lemmas referenced :  I-path_wf quotient-member-eq path-eq_wf path-eq-equiv I-path-morph_wf id-morph_wf named-path_wf l_member_wf coordinate_name_wf subtype_rel-equal cube-set-restriction_wf equal_wf squash_wf true_wf cube-set-restriction-id iff_weakening_equal equal-wf-base cubical-path_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf fresh-cname_wf set_wf not_wf cubical-type-ap-morph-comp cons_wf extend-name-morph_wf rename-one-name_wf iota_wf cubical-type-at_wf cube-set-restriction-comp name-comp_wf name-morph_wf extend-name-morph-iota name-comp-id-left rename-one-extend-name-morph cubical-type-ap-morph_wf rename-one-iota rename-one-extend-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry introduction extract_by_obid isectElimination hypothesisEquality rename lambdaEquality independent_isectElimination dependent_functionElimination dependent_pairEquality setElimination independent_functionElimination voidElimination applyEquality instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productEquality addLevel hyp_replacement equalityUniverse levelHypothesis independent_pairFormation

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
\mforall{}w:cubical-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;I;1;alpha;w)  =  w)



Date html generated: 2017_10_05-PM-03_55_31
Last ObjectModification: 2017_07_28-AM-11_28_25

Theory : cubical!sets


Home Index