Nuprl Lemma : I-path-morph-id
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:X(I). ∀w:cubical-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;I;1;alpha;w) = w ∈ cubical-path(X;A;a;b;I;alpha))
Proof
Definitions occuring in Statement : 
cubical-path: cubical-path(X;A;a;b;I;alpha), 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p), 
cubical-term: {X ⊢ _:AF}, 
cubical-type: {X ⊢ _}, 
I-cube: X(I), 
cubical-set: CubicalSet, 
id-morph: 1, 
coordinate_name: Cname, 
list: T List, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
cubical-path: cubical-path(X;A;a;b;I;alpha), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
I-path: I-path(X;A;a;b;I;alpha), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p), 
path-eq: path-eq(X;A;I;alpha;p;q), 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
named-path: named-path(X;A;a;b;I;alpha;z)
Lemmas referenced : 
I-path_wf, 
quotient-member-eq, 
path-eq_wf, 
path-eq-equiv, 
I-path-morph_wf, 
id-morph_wf, 
named-path_wf, 
l_member_wf, 
coordinate_name_wf, 
subtype_rel-equal, 
cube-set-restriction_wf, 
equal_wf, 
squash_wf, 
true_wf, 
cube-set-restriction-id, 
iff_weakening_equal, 
equal-wf-base, 
cubical-path_wf, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
fresh-cname_wf, 
set_wf, 
not_wf, 
cubical-type-ap-morph-comp, 
cons_wf, 
extend-name-morph_wf, 
rename-one-name_wf, 
iota_wf, 
cubical-type-at_wf, 
cube-set-restriction-comp, 
name-comp_wf, 
name-morph_wf, 
extend-name-morph-iota, 
name-comp-id-left, 
rename-one-extend-name-morph, 
cubical-type-ap-morph_wf, 
rename-one-iota, 
rename-one-extend-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_pairEquality, 
setElimination, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productEquality, 
addLevel, 
hyp_replacement, 
equalityUniverse, 
levelHypothesis, 
independent_pairFormation
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
\mforall{}w:cubical-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;I;1;alpha;w)  =  w)
Date html generated:
2017_10_05-PM-03_55_31
Last ObjectModification:
2017_07_28-AM-11_28_25
Theory : cubical!sets
Home
Index