Nuprl Lemma : name-comp-id-left

[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((1 f) f ∈ name-morph(I;J))


Proof




Definitions occuring in Statement :  name-comp: (f g) id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] id-morph: 1 name-comp: (f g) uext: uext(g) compose: g ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  all_wf nameset_wf assert_wf isname_wf equal_wf extd-nameset_wf name-morph_wf list_wf coordinate_name_wf isname-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename equalitySymmetry dependent_set_memberEquality hypothesis lemma_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality isect_memberEquality axiomEquality because_Cache functionExtensionality

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((1  o  f)  =  f)



Date html generated: 2016_05_20-AM-09_31_48
Last ObjectModification: 2015_12_28-PM-04_45_45

Theory : cubical!sets


Home Index