Nuprl Lemma : isname-nameset
∀[L:Cname List]. ∀[z:nameset(L)].  (isname(z) ~ tt)
Proof
Definitions occuring in Statement : 
isname: isname(z), 
nameset: nameset(L), 
coordinate_name: Cname, 
list: T List, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
isname: isname(z), 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
le_wf, 
true_wf, 
assert_of_le_int, 
assert_wf, 
iff_wf, 
nameset_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
sqequalAxiom, 
instantiate, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[L:Cname  List].  \mforall{}[z:nameset(L)].    (isname(z)  \msim{}  tt)
Date html generated:
2016_05_20-AM-09_29_14
Last ObjectModification:
2015_12_28-PM-04_47_46
Theory : cubical!sets
Home
Index