Nuprl Lemma : cube-set-restriction-comp
∀X:CubicalSet. ∀I,J,K:Cname List. ∀f:name-morph(I;J). ∀g:name-morph(J;K). ∀a:X(I).  (g(f(a)) = (f o g)(a) ∈ X(K))
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
name-comp: (f o g)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical-set: CubicalSet
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
I-cube: X(I)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
compose: f o g
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
ob_pair_lemma, 
subtype_rel_self, 
iff_weakening_equal, 
compose_wf, 
name-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}X:CubicalSet.  \mforall{}I,J,K:Cname  List.  \mforall{}f:name-morph(I;J).  \mforall{}g:name-morph(J;K).  \mforall{}a:X(I).
    (g(f(a))  =  (f  o  g)(a))
Date html generated:
2017_10_05-AM-10_11_58
Last ObjectModification:
2017_07_28-AM-11_18_01
Theory : cubical!sets
Home
Index