Nuprl Lemma : rename-one-name_wf

[I:Cname List]. ∀[z1,z2:Cname].
  rename-one-name(z1;z2) ∈ name-morph([z1 I];[z2 I]) supposing (z1 ∈ I)) ∧ (z2 ∈ I))


Proof




Definitions occuring in Statement :  rename-one-name: rename-one-name(z1;z2) name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rename-one-name: rename-one-name(z1;z2) and: P ∧ Q name-morph: name-morph(I;J) not: ¬A implies:  Q prop: false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] nameset: nameset(L) subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q coordinate_name: Cname int_upper: {i...} isname: isname(z) true: True so_lambda: λ2x.t[x] so_apply: x[s] squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P)
Lemmas referenced :  l_member_wf coordinate_name_wf istype-void list_wf cons_wf nameset_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert-eq-cname eqtt_to_assert bool_wf eq-cname_wf nameset_subtype_extd-nameset cons_member iff_imp_equal_bool le_int_wf btrue_wf iff_functionality_wrt_iff assert_wf le_wf true_wf iff_weakening_uiff assert_of_le_int iff_weakening_equal equal-wf-T-base set_subtype_base istype-int int_subtype_base isname-nameset extd-nameset_wf nameset_subtype_base extd-nameset_subtype_base full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma decidable__equal_int int_formula_prop_wf istype-le istype-assert isname_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin dependent_set_memberEquality_alt hypothesis axiomEquality equalityTransitivity equalitySymmetry productIsType functionIsType universeIsType extract_by_obid isectElimination hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType voidElimination because_Cache independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination equalityElimination unionElimination lambdaFormation rename setElimination lambdaEquality applyEquality dependent_set_memberEquality inlFormation inrFormation lambdaFormation_alt natural_numberEquality independent_pairFormation dependent_pairFormation_alt equalityIsType3 intEquality lambdaEquality_alt closedConclusion equalityIsType1 inlFormation_alt equalityIsType4 applyLambdaEquality imageMemberEquality baseClosed imageElimination approximateComputation int_eqEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[z1,z2:Cname].
    rename-one-name(z1;z2)  \mmember{}  name-morph([z1  /  I];[z2  /  I])  supposing  (\mneg{}(z1  \mmember{}  I))  \mwedge{}  (\mneg{}(z2  \mmember{}  I))



Date html generated: 2019_11_05-PM-00_25_01
Last ObjectModification: 2018_11_08-PM-00_27_38

Theory : cubical!sets


Home Index