Nuprl Lemma : rename-one-name_wf
∀[I:Cname List]. ∀[z1,z2:Cname].
  rename-one-name(z1;z2) ∈ name-morph([z1 / I];[z2 / I]) supposing (¬(z1 ∈ I)) ∧ (¬(z2 ∈ I))
Proof
Definitions occuring in Statement : 
rename-one-name: rename-one-name(z1;z2), 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
l_member: (x ∈ l), 
cons: [a / b], 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rename-one-name: rename-one-name(z1;z2), 
and: P ∧ Q, 
name-morph: name-morph(I;J), 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
all: ∀x:A. B[x], 
nameset: nameset(L), 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
coordinate_name: Cname, 
int_upper: {i...}, 
isname: isname(z), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
decidable: Dec(P)
Lemmas referenced : 
l_member_wf, 
coordinate_name_wf, 
istype-void, 
list_wf, 
cons_wf, 
nameset_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert-eq-cname, 
eqtt_to_assert, 
bool_wf, 
eq-cname_wf, 
nameset_subtype_extd-nameset, 
cons_member, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
true_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
iff_weakening_equal, 
equal-wf-T-base, 
set_subtype_base, 
istype-int, 
int_subtype_base, 
isname-nameset, 
extd-nameset_wf, 
nameset_subtype_base, 
extd-nameset_subtype_base, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
decidable__equal_int, 
int_formula_prop_wf, 
istype-le, 
istype-assert, 
isname_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality_alt, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
voidElimination, 
because_Cache, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
inlFormation, 
inrFormation, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityIsType3, 
intEquality, 
lambdaEquality_alt, 
closedConclusion, 
equalityIsType1, 
inlFormation_alt, 
equalityIsType4, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[z1,z2:Cname].
    rename-one-name(z1;z2)  \mmember{}  name-morph([z1  /  I];[z2  /  I])  supposing  (\mneg{}(z1  \mmember{}  I))  \mwedge{}  (\mneg{}(z2  \mmember{}  I))
Date html generated:
2019_11_05-PM-00_25_01
Last ObjectModification:
2018_11_08-PM-00_27_38
Theory : cubical!sets
Home
Index