Nuprl Lemma : nameset_subtype_extd-nameset
∀[L:Cname List]. (nameset(L) ⊆r extd-nameset(L))
Proof
Definitions occuring in Statement : 
extd-nameset: extd-nameset(L)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
extd-nameset: extd-nameset(L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_b-union-left, 
nameset_wf, 
int_seg_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
axiomEquality
Latex:
\mforall{}[L:Cname  List].  (nameset(L)  \msubseteq{}r  extd-nameset(L))
Date html generated:
2016_05_20-AM-09_29_09
Last ObjectModification:
2015_12_28-PM-04_47_54
Theory : cubical!sets
Home
Index