Nuprl Lemma : I-path-morph_wf

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀w:I-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;K;f;alpha;w) ∈ I-path(X;A;a;b;K;f(alpha)))


Proof




Definitions occuring in Statement :  I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname list: List all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  I-path: I-path(X;A;a;b;I;alpha) all: x:A. B[x] member: t ∈ T I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) uall: [x:A]. B[x] prop: uimplies: supposing a
Lemmas referenced :  fresh-cname_wf named-path-morph_wf not_wf l_member_wf coordinate_name_wf named-path_wf cube-set-restriction_wf I-cube_wf name-morph_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productElimination thin dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis dependent_functionElimination because_Cache setElimination rename independent_isectElimination productEquality setEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}w:I-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;K;f;alpha;w)  \mmember{}  I-path(X;A;a;b;K;f(alpha)))



Date html generated: 2016_06_16-PM-07_29_03
Last ObjectModification: 2015_12_28-PM-04_13_43

Theory : cubical!sets


Home Index