Nuprl Lemma : I-path-morph_wf
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀w:I-path(X;A;a;b;I;alpha).
  (I-path-morph(X;A;I;K;f;alpha;w) ∈ I-path(X;A;a;b;K;f(alpha)))
Proof
Definitions occuring in Statement : 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p), 
I-path: I-path(X;A;a;b;I;alpha), 
cubical-term: {X ⊢ _:AF}, 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
all: ∀x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
I-path: I-path(X;A;a;b;I;alpha), 
all: ∀x:A. B[x], 
member: t ∈ T, 
I-path-morph: I-path-morph(X;A;I;K;f;alpha;p), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a
Lemmas referenced : 
fresh-cname_wf, 
named-path-morph_wf, 
not_wf, 
l_member_wf, 
coordinate_name_wf, 
named-path_wf, 
cube-set-restriction_wf, 
I-cube_wf, 
name-morph_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
productElimination, 
thin, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
productEquality, 
setEquality
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}w:I-path(X;A;a;b;I;alpha).
    (I-path-morph(X;A;I;K;f;alpha;w)  \mmember{}  I-path(X;A;a;b;K;f(alpha)))
Date html generated:
2016_06_16-PM-07_29_03
Last ObjectModification:
2015_12_28-PM-04_13_43
Theory : cubical!sets
Home
Index