Nuprl Lemma : named-path-morph_wf

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀z:{z:Cname| ¬(z ∈ I)} .
w:named-path(X;A;a;b;I;alpha;z). ∀x:{x:Cname| ¬(x ∈ K)} .
  (named-path-morph(X;A;I;K;z;x;f;alpha;w) ∈ named-path(X;A;a;b;K;f(alpha);x))


Proof




Definitions occuring in Statement :  named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) named-path: named-path(X;A;a;b;I;alpha;z) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) list: List all: x:A. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T named-path: named-path(X;A;a;b;I;alpha;z) prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a not: ¬A implies:  Q false: False named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega) cubical-term-at: u(a) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b
Lemmas referenced :  set_wf coordinate_name_wf not_wf l_member_wf named-path_wf I-cube_wf name-morph_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf cubical-type-at_wf squash_wf true_wf cons_wf equal_wf cube-set-restriction-comp iota_wf extend-name-morph_wf cube-set-restriction_wf iff_weakening_equal extend-name-morph-iota name-comp_wf cubical-type-ap-morph_wf cubical-term-at-morph cubical-term-at_wf cubical-type-ap-morph-comp face-map_wf false_wf lelt_wf name-comp-assoc iota-identity name-comp-id-right subtype_rel-equal name-comp-id-left cube-set-restriction-id extend-name-morph-face-map name-path-endpoints_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination sqequalRule lambdaEquality hypothesisEquality because_Cache independent_isectElimination independent_functionElimination voidElimination applyEquality equalityTransitivity equalitySymmetry hyp_replacement imageElimination universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_pairFormation applyLambdaEquality instantiate

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}z:\{z:Cname|  \mneg{}(z  \mmember{}  I)\}  .  \mforall{}w:named-path(X;A;a;b;I;alpha;z).  \mforall{}x:\{x:Cname|  \mneg{}(x  \mmember{}  K)\}  .
    (named-path-morph(X;A;I;K;z;x;f;alpha;w)  \mmember{}  named-path(X;A;a;b;K;f(alpha);x))



Date html generated: 2017_10_05-PM-03_54_35
Last ObjectModification: 2017_07_28-AM-11_27_39

Theory : cubical!sets


Home Index