Nuprl Lemma : named-path-morph_wf
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀z:{z:Cname| ¬(z ∈ I)} .
∀w:named-path(X;A;a;b;I;alpha;z). ∀x:{x:Cname| ¬(x ∈ K)} .
  (named-path-morph(X;A;I;K;z;x;f;alpha;w) ∈ named-path(X;A;a;b;K;f(alpha);x))
Proof
Definitions occuring in Statement : 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w), 
named-path: named-path(X;A;a;b;I;alpha;z), 
cubical-term: {X ⊢ _:AF}, 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
l_member: (x ∈ l), 
list: T List, 
all: ∀x:A. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
named-path: named-path(X;A;a;b;I;alpha;z), 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w), 
subtype_rel: A ⊆r B, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega), 
cubical-term-at: u(a), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b
Lemmas referenced : 
set_wf, 
coordinate_name_wf, 
not_wf, 
l_member_wf, 
named-path_wf, 
I-cube_wf, 
name-morph_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
cubical-type-at_wf, 
squash_wf, 
true_wf, 
cons_wf, 
equal_wf, 
cube-set-restriction-comp, 
iota_wf, 
extend-name-morph_wf, 
cube-set-restriction_wf, 
iff_weakening_equal, 
extend-name-morph-iota, 
name-comp_wf, 
cubical-type-ap-morph_wf, 
cubical-term-at-morph, 
cubical-term-at_wf, 
cubical-type-ap-morph-comp, 
face-map_wf, 
false_wf, 
lelt_wf, 
name-comp-assoc, 
iota-identity, 
name-comp-id-right, 
subtype_rel-equal, 
name-comp-id-left, 
cube-set-restriction-id, 
extend-name-morph-face-map, 
name-path-endpoints_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairFormation, 
applyLambdaEquality, 
instantiate
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}z:\{z:Cname|  \mneg{}(z  \mmember{}  I)\}  .  \mforall{}w:named-path(X;A;a;b;I;alpha;z).  \mforall{}x:\{x:Cname|  \mneg{}(x  \mmember{}  K)\}  .
    (named-path-morph(X;A;I;K;z;x;f;alpha;w)  \mmember{}  named-path(X;A;a;b;K;f(alpha);x))
Date html generated:
2017_10_05-PM-03_54_35
Last ObjectModification:
2017_07_28-AM-11_27_39
Theory : cubical!sets
Home
Index