Nuprl Lemma : name-comp-id-right

[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((f 1) f ∈ name-morph(I;J))


Proof




Definitions occuring in Statement :  name-comp: (f g) id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] id-morph: 1 name-comp: (f g) uext: uext(g) compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  all_wf nameset_wf assert_wf isname_wf equal_wf extd-nameset_wf name-morph_wf list_wf coordinate_name_wf isname-nameset bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename equalitySymmetry dependent_set_memberEquality hypothesis extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality functionExtensionality because_Cache isect_memberEquality axiomEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation equalityTransitivity promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((f  o  1)  =  f)



Date html generated: 2017_10_05-AM-10_06_49
Last ObjectModification: 2017_07_28-AM-11_16_28

Theory : cubical!sets


Home Index