Nuprl Lemma : name-comp-id-right
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  ((f o 1) = f ∈ name-morph(I;J))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
id-morph: 1
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
id-morph: 1
, 
name-comp: (f o g)
, 
uext: uext(g)
, 
compose: f o g
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
all_wf, 
nameset_wf, 
assert_wf, 
isname_wf, 
equal_wf, 
extd-nameset_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
isname-nameset, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
equalityTransitivity, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    ((f  o  1)  =  f)
Date html generated:
2017_10_05-AM-10_06_49
Last ObjectModification:
2017_07_28-AM-11_16_28
Theory : cubical!sets
Home
Index