Nuprl Lemma : cubical-type-ap-morph-comp

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I,J,K:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:name-morph(J;K)]. ∀[a:X(I)]. ∀[u:A(a)].
  (((u f) f(a) g) (u (f g)) ∈ A((f g)(a)))


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-type-ap-morph: (u f) cubical-type-at: A(a) pi1: fst(t) pi2: snd(t) and: P ∧ Q squash: T all: x:A. B[x] true: True subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf list_wf coordinate_name_wf cube-set-restriction_wf name-comp_wf iff_weakening_equal cubical-type-at_wf name-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule applyEquality lambdaEquality imageElimination extract_by_obid isectElimination because_Cache hypothesis functionExtensionality hypothesisEquality dependent_functionElimination equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality equalityTransitivity independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,K:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:name-morph(J;K)].
\mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (((u  a  f)  f(a)  g)  =  (u  a  (f  o  g)))



Date html generated: 2017_10_05-AM-10_12_29
Last ObjectModification: 2017_07_28-AM-11_18_20

Theory : cubical!sets


Home Index