Nuprl Lemma : cubical-type-at_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[a:X(I)].  (A(a) ∈ Type)


Proof




Definitions occuring in Statement :  cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-type-at: A(a) pi1: fst(t)
Lemmas referenced :  I-cube_wf list_wf coordinate_name_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[a:X(I)].    (A(a)  \mmember{}  Type)



Date html generated: 2016_06_16-PM-05_38_47
Last ObjectModification: 2015_12_28-PM-04_36_30

Theory : cubical!sets


Home Index