Nuprl Lemma : name-comp_wf

[I,J,K:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:name-morph(J;K)].  ((f g) ∈ name-morph(I;K))


Proof




Definitions occuring in Statement :  name-comp: (f g) name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) name-comp: (f g) all: x:A. B[x] compose: g uext: uext(g) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  name-morph_wf list_wf coordinate_name_wf compose_wf nameset_wf extd-nameset_wf uext_wf isname_wf bool_wf eqtt_to_assert assert-isname equal_wf assert_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nameset_subtype_extd-nameset equal_functionality_wrt_subtype_rel2 all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache functionExtensionality applyEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination lambdaEquality functionEquality

Latex:
\mforall{}[I,J,K:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:name-morph(J;K)].    ((f  o  g)  \mmember{}  name-morph(I;K))



Date html generated: 2017_10_05-AM-10_06_45
Last ObjectModification: 2017_07_28-AM-11_16_27

Theory : cubical!sets


Home Index