Nuprl Lemma : uext_wf

[I,J:Cname List]. ∀[g:nameset(I) ⟶ extd-nameset(J)].  (uext(g) ∈ extd-nameset(I) ⟶ extd-nameset(J))


Proof




Definitions occuring in Statement :  uext: uext(g) extd-nameset: extd-nameset(L) nameset: nameset(L) coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uext: uext(g) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B
Lemmas referenced :  isname_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot extd-nameset_wf nameset_wf list_wf coordinate_name_wf assert-isname not-assert-isname nsub2_subtype_extd-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination axiomEquality functionEquality isect_memberEquality applyEquality functionExtensionality

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[g:nameset(I)  {}\mrightarrow{}  extd-nameset(J)].
    (uext(g)  \mmember{}  extd-nameset(I)  {}\mrightarrow{}  extd-nameset(J))



Date html generated: 2017_10_05-AM-10_05_29
Last ObjectModification: 2017_07_28-AM-11_16_04

Theory : cubical!sets


Home Index