Nuprl Lemma : uext_wf
∀[I,J:Cname List]. ∀[g:nameset(I) ⟶ extd-nameset(J)].  (uext(g) ∈ extd-nameset(I) ⟶ extd-nameset(J))
Proof
Definitions occuring in Statement : 
uext: uext(g), 
extd-nameset: extd-nameset(L), 
nameset: nameset(L), 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uext: uext(g), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B
Lemmas referenced : 
isname_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
extd-nameset_wf, 
nameset_wf, 
list_wf, 
coordinate_name_wf, 
assert-isname, 
not-assert-isname, 
nsub2_subtype_extd-nameset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
applyEquality, 
functionExtensionality
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[g:nameset(I)  {}\mrightarrow{}  extd-nameset(J)].
    (uext(g)  \mmember{}  extd-nameset(I)  {}\mrightarrow{}  extd-nameset(J))
Date html generated:
2017_10_05-AM-10_05_29
Last ObjectModification:
2017_07_28-AM-11_16_04
Theory : cubical!sets
Home
Index