Nuprl Lemma : iota_wf
∀[I:Cname List]. ∀[x:Cname].  (iota(x) ∈ name-morph(I;[x / I]))
Proof
Definitions occuring in Statement : 
iota: iota(x)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iota: iota(x)
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
sq_type: SQType(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
coordinate_name_wf, 
list_wf, 
nameset_subtype, 
cons_wf, 
l_subset_right_cons_trivial, 
nameset_subtype_extd-nameset, 
nameset_wf, 
assert_wf, 
isname_wf, 
equal_wf, 
extd-nameset_wf, 
extd-nameset_subtype, 
subtype_base_sq, 
extd-nameset_subtype_base, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaFormation, 
instantiate, 
cumulativity, 
independent_functionElimination, 
functionEquality, 
functionExtensionality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:Cname].    (iota(x)  \mmember{}  name-morph(I;[x  /  I]))
Date html generated:
2017_10_05-AM-10_06_40
Last ObjectModification:
2017_07_28-AM-11_16_25
Theory : cubical!sets
Home
Index