Nuprl Lemma : l_subset_right_cons_trivial
∀[T:Type]. ∀x:T. ∀L:T List.  l_subset(T;L;[x / L])
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs), 
cons: [a / b], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
l_subset: l_subset(T;as;bs), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
or: P ∨ Q, 
prop: ℙ
Lemmas referenced : 
cons_member, 
equal_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
hypothesis, 
inrFormation, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    l\_subset(T;L;[x  /  L])
 Date html generated: 
2016_05_14-AM-07_53_57
 Last ObjectModification: 
2015_12_26-PM-04_48_01
Theory : list_1
Home
Index