Nuprl Lemma : nameset_subtype

[L1,L2:Cname List].  nameset(L1) ⊆nameset(L2) supposing l_subset(Cname;L1;L2)


Proof




Definitions occuring in Statement :  nameset: nameset(L) coordinate_name: Cname l_subset: l_subset(T;as;bs) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  nameset: nameset(L) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q l_subset: l_subset(T;as;bs)
Lemmas referenced :  subtype_rel_sets coordinate_name_wf l_member_wf l_subset_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality hypothesisEquality independent_isectElimination setElimination rename setEquality lambdaFormation dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L1,L2:Cname  List].    nameset(L1)  \msubseteq{}r  nameset(L2)  supposing  l\_subset(Cname;L1;L2)



Date html generated: 2016_05_20-AM-09_28_14
Last ObjectModification: 2015_12_28-PM-04_48_24

Theory : cubical!sets


Home Index