Nuprl Lemma : nameset_subtype
∀[L1,L2:Cname List].  nameset(L1) ⊆r nameset(L2) supposing l_subset(Cname;L1;L2)
Proof
Definitions occuring in Statement : 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
l_subset: l_subset(T;as;bs)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
nameset: nameset(L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
subtype_rel_sets, 
coordinate_name_wf, 
l_member_wf, 
l_subset_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L1,L2:Cname  List].    nameset(L1)  \msubseteq{}r  nameset(L2)  supposing  l\_subset(Cname;L1;L2)
Date html generated:
2016_05_20-AM-09_28_14
Last ObjectModification:
2015_12_28-PM-04_48_24
Theory : cubical!sets
Home
Index