Nuprl Lemma : l_subset_wf

[T:Type]. ∀[as,bs:T List].  (l_subset(T;as;bs) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_subset: l_subset(T;as;bs) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (l\_subset(T;as;bs)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_26_29
Last ObjectModification: 2018_09_26-PM-05_30_59

Theory : list_1


Home Index