Nuprl Lemma : l_subset_wf
∀[T:Type]. ∀[as,bs:T List].  (l_subset(T;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
l_subset: l_subset(T;as;bs), 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (l\_subset(T;as;bs)  \mmember{}  \mBbbP{})
 Date html generated: 
2019_06_20-PM-01_26_29
 Last ObjectModification: 
2018_09_26-PM-05_30_59
Theory : list_1
Home
Index