Nuprl Lemma : face-map_wf
∀[L:Cname List]. ∀[x:Cname]. ∀[p:ℕ2].  ((x:=p) ∈ name-morph([x / L];L))
Proof
Definitions occuring in Statement : 
face-map: (x:=i), 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
cons: [a / b], 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face-map: (x:=i), 
name-morph: name-morph(I;J), 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
not: ¬A, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
decidable: Dec(P), 
isname: isname(z), 
le_int: i ≤z j, 
lt_int: i <z j, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
coordinate_name_wf, 
list_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nsub2_subtype_extd-nameset, 
l_member_wf, 
nameset_subtype_extd-nameset, 
cons_member, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
nameset_wf, 
cons_wf, 
nil_wf, 
decidable__equal_int, 
int_subtype_base, 
false_wf, 
int_seg_subtype, 
int_seg_cases, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
assert_wf, 
isname_wf, 
extd-nameset_wf, 
extd-nameset_subtype_base, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
hypothesis_subsumption, 
addEquality, 
functionEquality, 
functionExtensionality
Latex:
\mforall{}[L:Cname  List].  \mforall{}[x:Cname].  \mforall{}[p:\mBbbN{}2].    ((x:=p)  \mmember{}  name-morph([x  /  L];L))
Date html generated:
2017_10_05-AM-10_06_24
Last ObjectModification:
2017_07_28-AM-11_16_20
Theory : cubical!sets
Home
Index