Nuprl Lemma : extend-name-morph-iota

I,K:Cname List. ∀f:name-morph(I;K). ∀z,x:Cname.
  (iota(z) f[z:=x]) (f iota(x)) ∈ name-morph(I;[x K]) supposing (x ∈ K)) ∧ (z ∈ I))


Proof




Definitions occuring in Statement :  name-comp: (f g) iota: iota(x) extend-name-morph: f[z1:=z2] name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a all: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B name-morph: name-morph(I;J) prop: iota: iota(x) name-comp: (f g) extend-name-morph: f[z1:=z2] compose: g uext: uext(g) ifthenelse: if then else fi  btrue: tt nameset: nameset(L) implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  name-morphs-equal cons_wf coordinate_name_wf name-comp_wf iota_wf extend-name-morph_wf name-morph_wf not_wf l_member_wf nameset_wf isname-nameset eq-cname_wf bool_wf eqtt_to_assert assert-eq-cname eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot set_subtype_base le_wf int_subtype_base isname_wf extd-nameset_subtype l_subset_right_cons_trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut sqequalHypSubstitution productElimination thin introduction extract_by_obid isectElimination hypothesisEquality hypothesis independent_isectElimination because_Cache applyEquality lambdaEquality setElimination rename sqequalRule productEquality functionExtensionality unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality natural_numberEquality

Latex:
\mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}z,x:Cname.
    (iota(z)  o  f[z:=x])  =  (f  o  iota(x))  supposing  (\mneg{}(x  \mmember{}  K))  \mwedge{}  (\mneg{}(z  \mmember{}  I))



Date html generated: 2017_10_05-AM-10_08_34
Last ObjectModification: 2017_07_28-AM-11_16_55

Theory : cubical!sets


Home Index