Nuprl Lemma : name-morphs-equal
∀[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:nameset(I) ⟶ extd-nameset(J)].
  f = g ∈ name-morph(I;J) supposing f = g ∈ (nameset(I) ⟶ extd-nameset(J))
Proof
Definitions occuring in Statement : 
name-morph: name-morph(I;J)
, 
extd-nameset: extd-nameset(L)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph: name-morph(I;J)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
nameset_wf, 
assert_wf, 
isname_wf, 
equal_wf, 
extd-nameset_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:nameset(I)  {}\mrightarrow{}  extd-nameset(J)].    f  =  g  supposing  f  =  g
Date html generated:
2016_05_20-AM-09_29_38
Last ObjectModification:
2015_12_28-PM-04_47_35
Theory : cubical!sets
Home
Index