Nuprl Lemma : name-morphs-equal

[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:nameset(I) ⟶ extd-nameset(J)].
  g ∈ name-morph(I;J) supposing g ∈ (nameset(I) ⟶ extd-nameset(J))


Proof




Definitions occuring in Statement :  name-morph: name-morph(I;J) extd-nameset: extd-nameset(L) nameset: nameset(L) coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph: name-morph(I;J) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf nameset_wf assert_wf isname_wf equal_wf extd-nameset_wf name-morph_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis lemma_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:nameset(I)  {}\mrightarrow{}  extd-nameset(J)].    f  =  g  supposing  f  =  g



Date html generated: 2016_05_20-AM-09_29_38
Last ObjectModification: 2015_12_28-PM-04_47_35

Theory : cubical!sets


Home Index