Nuprl Lemma : extend-name-morph_wf

[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[z1,z2:Cname].  f[z1:=z2] ∈ name-morph([z1 I];[z2 J]) supposing ¬(z2 ∈ J)


Proof




Definitions occuring in Statement :  extend-name-morph: f[z1:=z2] name-morph: name-morph(I;J) coordinate_name: Cname l_member: (x ∈ l) cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a extend-name-morph: f[z1:=z2] name-morph: name-morph(I;J) not: ¬A implies:  Q prop: false: False iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q subtype_rel: A ⊆B exists: x:A. B[x] bfalse: ff and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] nameset: nameset(L) isname: isname(z) true: True l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) top: Top select: L[n] cons: [a b] cand: c∧ B nat_plus: + squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) sq_stable: SqStable(P) ge: i ≥  respects-equality: respects-equality(S;T)
Lemmas referenced :  l_member_wf coordinate_name_wf istype-void name-morph_wf list_wf nameset_wf l_subset_right_cons_trivial cons_wf extd-nameset_subtype int_subtype_base istype-int le_wf set_subtype_base equal-wf-T-base assert_wf iff_weakening_uiff assert-bnot bool_wf subtype_base_sq bool_cases_sqequal bool_subtype_base eqff_to_assert assert-eq-cname eqtt_to_assert eq-cname_wf nameset_subtype_extd-nameset cons_member subtype_rel_transitivity extd-nameset_wf nameset_subtype iff_imp_equal_bool le_int_wf btrue_wf iff_functionality_wrt_iff true_wf assert_of_le_int iff_weakening_equal istype-true istype-le length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than nat_plus_properties add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf length_wf select_wf nat_properties sq_stable__le sq_stable__l_member decidable__equal-coordinate_name decidable__le intformle_wf int_formula_prop_le_lemma assert-isname subtype-respects-equality istype-assert isname_wf extd-nameset_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType equalityIsType1 natural_numberEquality closedConclusion intEquality voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp applyEquality equalityIsType3 dependent_pairFormation_alt independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation_alt because_Cache rename setElimination lambdaEquality_alt inlFormation_alt independent_pairFormation applyLambdaEquality imageMemberEquality baseClosed imageElimination approximateComputation Error :memTop,  pointwiseFunctionality baseApply int_eqEquality equalityIstype productIsType sqequalBase

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[z1,z2:Cname].
    f[z1:=z2]  \mmember{}  name-morph([z1  /  I];[z2  /  J])  supposing  \mneg{}(z2  \mmember{}  J)



Date html generated: 2020_05_21-AM-10_48_18
Last ObjectModification: 2019_12_10-PM-00_19_46

Theory : cubical!sets


Home Index