Nuprl Lemma : cubical-term-at-morph
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[a:X(I)]. ∀[J:Cname List]. ∀[f:name-morph(I;J)].
  ((u(a) a f) = u(f(a)) ∈ A(f(a)))
Proof
Definitions occuring in Statement : 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type-ap-morph: (u a f)
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type: {X ⊢ _}
, 
cubical-term: {X ⊢ _:AF}
, 
pi1: fst(t)
, 
cubical-term-at: u(a)
, 
cubical-type-ap-morph: (u a f)
, 
cubical-type-at: A(a)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
I-cube_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[a:X(I)].  \mforall{}[J:Cname  List].
\mforall{}[f:name-morph(I;J)].
    ((u(a)  a  f)  =  u(f(a)))
Date html generated:
2016_06_16-PM-05_40_10
Last ObjectModification:
2015_12_28-PM-04_35_37
Theory : cubical!sets
Home
Index