Nuprl Lemma : fresh-cname_wf
∀[I:Cname List]. (fresh-cname(I) ∈ {x:Cname| ¬(x ∈ I)} )
Proof
Definitions occuring in Statement : 
fresh-cname: fresh-cname(I)
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
coordinate_name: Cname
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
fresh-cname: fresh-cname(I)
, 
nat_plus: ℕ+
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
pi1: fst(t)
, 
l_member: (x ∈ l)
, 
l_all: (∀x∈L.P[x])
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
squash: ↓T
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
cons_wf, 
int_upper_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_list, 
coordinate_name_wf, 
subtype_rel_sets_simple, 
le_wf, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
list_wf, 
list-max-property, 
istype-int_upper, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
list-max_wf, 
non_neg_length, 
length_wf, 
l_member_wf, 
int_upper_properties, 
set_subtype_base, 
equal-wf-base, 
int_subtype_base, 
l_all_wf2, 
istype-void, 
nat_properties, 
squash_wf, 
true_wf, 
select_cons_tl, 
subtype_rel_self, 
iff_weakening_equal, 
add-subtract-cancel, 
select_cons_tl_sq2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
Error :memTop, 
sqequalRule, 
universeIsType, 
hypothesisEquality, 
voidElimination, 
applyEquality, 
intEquality, 
lambdaFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
inhabitedIsType, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
equalityIstype, 
because_Cache, 
addEquality, 
productIsType, 
sqequalBase, 
setIsType, 
functionIsType, 
imageMemberEquality, 
imageElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[I:Cname  List].  (fresh-cname(I)  \mmember{}  \{x:Cname|  \mneg{}(x  \mmember{}  I)\}  )
Date html generated:
2020_05_21-AM-10_48_10
Last ObjectModification:
2020_01_01-PM-02_24_19
Theory : cubical!sets
Home
Index