Nuprl Lemma : select_cons_tl_sq2

[i:ℕ]. ∀[x,l:Top].  ([x l][i 1] l[i])


Proof




Definitions occuring in Statement :  select: L[n] cons: [a b] nat: uall: [x:A]. B[x] top: Top add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: uimplies: supposing a and: P ∧ Q le: A ≤ B cand: c∧ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  select-cons-tl decidable__lt istype-false not-lt-2 condition-implies-le minus-add istype-void minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel add-subtract-cancel istype-top istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality setElimination rename hypothesis natural_numberEquality independent_isectElimination independent_pairFormation productElimination dependent_functionElimination unionElimination lambdaFormation_alt voidElimination independent_functionElimination isect_memberEquality_alt minusEquality axiomSqEquality inhabitedIsType isectIsTypeImplies

Latex:
\mforall{}[i:\mBbbN{}].  \mforall{}[x,l:Top].    ([x  /  l][i  +  1]  \msim{}  l[i])



Date html generated: 2020_05_19-PM-09_37_07
Last ObjectModification: 2019_11_13-AM-10_24_52

Theory : list_0


Home Index